Skip to main content
Log in

Effect of Nb Content on Solidification Characteristics and Microsegregation in Cast Ti–48Al–xNb Alloys

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Microstructural evolution in nonequilibrium solidification of Ti–48Al–xNb alloys with Nb contents ranging from 2 to 8 at% has been studied by containerless electromagnetic levitation. Levitated drops of controlled undercooling were quenched onto chill copper substrates and subjected to phase and microstructure analysis. With increasing Nb content, the solidification path changes gradually from hyperperitectic solidification to hypoperitectic solidification and both solidification segregation (S-segregation) and β-solidification gradually increase. A transition from typical hypoperitectic solidification to a sole solidification of the β phase beyond a critical undercooling is revealed for the Ti–48Al–8Nb hypoperitectic alloy. For the Ti–48Al–2Nb alloy, the morphologies of the primary β dendrites are not observed. With increasing undercooling, the coarsening of the lamellar colonies occurs, which can be attributed to the transition of the primary β dendritic morphology. Furthermore, the solute concentration profiles for the final solidification microstructure are obtained to examine the segregation behaviors of alloying elements. With increasing Nb content, the undercooling eliminating S-segregation gradually increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, J. Müllauer, M. Oehring, J.D.H. Paul, Adv. Eng. Mater. 2, 699 (2000)

    Article  Google Scholar 

  2. J. Aguilar, A. Schievenbusch, O. Kattlitz, Intermetallics 19, 757 (2011)

    Article  Google Scholar 

  3. H. Clemens, S. Mayer, Adv. Eng. Mater. 15, 191 (2013)

    Article  Google Scholar 

  4. X.H. Wu, Intermetallics 14, 1114 (2006)

    Article  Google Scholar 

  5. K.J. Leonard, V.K. Vasudevan, Intermetallics 8, 1257 (2000)

    Article  Google Scholar 

  6. R.M. Imavey, V.M. Imayev, M. Oehring, F. Appel, Intermetallics 15, 451 (2007)

    Article  Google Scholar 

  7. Y.W. Kim, S.L. Kim, D. Dimiduk, C. Woodward, Gamma Titanium Aluminides eds. Y.W. Kim, D. Morris, R. Yang, and C. Leyens (TMS, Warrendale, PA, 2008) p. 215

  8. V. Imayev, T. Oleneva, R. Imayev, H.J. Christ, H.J. Fecht, Intermetallics 26, 91 (2012)

    Article  Google Scholar 

  9. G.H. Liu, X.Z. Li, Y.Q. Su, D.M. Liu, J.J. Guo, H.Z. Fu, J. Alloys Compd. 541, 275 (2012)

    Article  Google Scholar 

  10. X.F. Ding, J.P. Lin, L.Q. Zhang, H.L. Wang, G.J. Hao, G.L. Chen, J. Alloys Compd. 506, 115 (2010)

    Article  Google Scholar 

  11. J. Lapin, Z. Gabalcova, T. Pelachova, Intermetallics 9, 396 (2011)

    Article  Google Scholar 

  12. G.L. Chen, X.J. Xu, Z.K. Teng, Y.L. Wang, J.P. Lin, Intermetallics 15, 625 (2007)

    Article  Google Scholar 

  13. F. Appel, M. Oehring, γ-Titanium Aluminide Alloys: Alloy Design and Properties (Wiley-VCH GmbH & Co., Weinheim, 2003)

    Google Scholar 

  14. D.R. Johnson, K. Chihara, H. Inui, M. Yamaguchi, Acta Mater. 46, 6529 (1998)

    Article  Google Scholar 

  15. F.H. Froes, C. Suryanarayana, D. Elizer, J. Mater. Sci. 27, 5113 (1992)

    Article  Google Scholar 

  16. M.J. Blackburn, In Proceedings of International Conference, London (1968)

  17. D. Daloz, U. Hecht, J. Zollinger, H. Combeau, A. Hazotte, M. Založnik, Intermetallics 19, 749 (2011)

    Article  Google Scholar 

  18. E. Schwaighofer, B. Rashkova, H. Clemens, A. Stark, S. Mayer, Intermetallics 46, 173 (2014)

    Article  Google Scholar 

  19. V. Raghavan, J. Phase Equilib. Diffus. 26, 360 (2005)

    Article  Google Scholar 

  20. Y.Z. Chen, F. Liu, G.C. Yang, N. Liu, C.L. Yang, Y.H. Zhou, Scr. Mater. 57, 779 (2007)

    Article  Google Scholar 

  21. S.Y. Zhou, R. Hu, L. Jiang, J.S. Li, H.C. Kou, H. Chang, L. Zhou, J. Mater. Sci. 46, 5495 (2011)

    Article  Google Scholar 

  22. H.N. Lee, D.R. Johnson, H. Inui, M.H. Oh, D.M. Wee, M. Yamaguchi, Acta Mater. 48, 3221 (2000)

    Article  Google Scholar 

  23. A.K. Singh, K. Muraleedharan, D. Banerjee, Scr. Mater. 48, 767 (2003)

    Article  Google Scholar 

  24. J.H. Kim, S.W. Kim, H.N. Lee, M.H. Oh, H. Inui, D.M. Wee, Intermetallics 13, 1038 (2005)

    Article  Google Scholar 

  25. A. Shulga, J. Alloys Compd. 436, 155 (2007)

    Article  Google Scholar 

  26. X. Zhao, L. Liu, Z. Yu, W. Zhang, J. Zhang, H. Fu, J. Mater. Sci. 45, 6101 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Basic Research Program of China (“973” Project, Grant No. 2011CB605503) and the 111 Project of Northwestern Polytechnical University (Grant B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hu.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Hu, R., Zhang, TB. et al. Effect of Nb Content on Solidification Characteristics and Microsegregation in Cast Ti–48Al–xNb Alloys. Acta Metall. Sin. (Engl. Lett.) 29, 714–721 (2016). https://doi.org/10.1007/s40195-016-0435-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0435-9

Keywords

Navigation