Skip to main content

Advertisement

Log in

Microstructure, cracking behavior and control of Al–Fe–V–Si alloy produced by selective laser melting

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) technology based on atomized powder was used to fabricate Al–8.5Fe–1.3V–1.7Si (wt%) alloy parts. The microstructure and crack characterization of SLM samples fabricated at various conditions were presented. Results show that the cracks appear periodically along the building direction, initiate preferably at the outer edges of the as-built samples and propagated along the remelting border zone (RBZ) into deposited layers. Solid-phase cracking is proposed according to the fracture morphology. The thermal-induced residual stress during SLM combined with the precipitation of relatively large-sized AlmFe phase in the RBZ results in the formation of cracks. Enhancing scanning speed and hatch distance enable to reduce the cracking sensitivity. The crack-free Al–8.5Fe–1.3V–1.7Si parts can be fabricated at optimized parameters of laser power of 320 W, scanning speed of 1000 mm·s−1 and hatch distance of 0.10 mm along with proper laser pre-heating procedure. The samples built horizontally show good ultimate tensile properties of 454 MPa in average with the elongation of 7.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Skinner DJ, Bye RL, Raybould D. Dispersion strengthened Al–Fe–V–Si alloys. Scr Metall. 1986;20(6):867.

    Article  CAS  Google Scholar 

  2. Skinner DJ, Kim YW, Griffith WM. Dispersion Strengthened Aluminium Alloys. Warrendale: TMS; 1988. 181.

    Google Scholar 

  3. Frank RE, Hawk JA. Effect of very high temperatures on the mechanical properties of Al–Fe–V–Si alloy. Scr Metall. 1989;23(1):113.

    Article  Google Scholar 

  4. Khatri SC, Lawley A, Koczak MJ, Grassett KG. Creep and microstructural stability of dispersion strengthened Al–Fe–V–Si–Er alloy. Mater Sci Eng A. 1993;167(1–2):11.

    Article  Google Scholar 

  5. Hariprasad S, Sastry SML, Jerina KL, Lederich RJ. Microstructures and mechanical properties of dispersion-strengthened high-temperature Al–8.5Fe–1.2V–1.7Si alloys produced by atomized melt deposition process. Metall Trans A. 1993;24(4):865.

    Article  Google Scholar 

  6. Hariprasad S, Sastry SML, Jerina KL. Deformation behavior of a rapidly solidified fine grained Al–8.5%Fe–1.2%V–1.7%Si alloy. Acta Mater. 1996;44(1):383.

    Article  CAS  Google Scholar 

  7. Yan QQ, Fu DF, Deng XF, Zhang H, Chen ZH. Tensile deformation behavior of spray-deposited FVS0812 heat-resistant aluminum alloy sheet at elevated temperatures. Mater Charact. 2007;58(6):575.

    Article  CAS  Google Scholar 

  8. Yao B, Ma XL, Lin F, Ge WJ. Microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser micro cladding deposition. Rare Met. 2015;34(7):445.

    Article  CAS  Google Scholar 

  9. Shao JZ, Li J, Song R, Bai L, Chen JL, Qu CC. Microstructure and wear behaviors of TiB/TiC reinforced Ti2Ni/α (Ti) matrix coating produced by laser cladding. Rare Met. 2016. doi:10.1007/s12598-016-0787-3.

    Article  Google Scholar 

  10. Thijs L, Kempen K, Kruth JP, Humbeeck JV. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10 Mg powder. Acta Mater. 2013;61(5):1809.

    Article  CAS  Google Scholar 

  11. Read N, Wang W, Essa K, Attallah MM. Selective laser melting of AlSi10 Mg alloy: process optimisation and mechanical properties development. Mater Des. 2015;65:417.

    Article  CAS  Google Scholar 

  12. Brandl E, Heckenberger U, Holzinger V, Buchbinder D. Additive manufactured AlSi10 Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des. 2012;34:159.

    Article  CAS  Google Scholar 

  13. Sun SB, Zheng LJ, Liu YY, Liu JH, Zhang H. Selective laser melting of Al–Fe–V–Si heat-resistant aluminum alloy powder: modeling and experiments. Int J Adv Manuf Technol. 2015;80(9):1787.

    Article  Google Scholar 

  14. Sun SB, Zheng LJ, Liu YY, Liu JH, Zhang H. Characterization of Al–Fe–V–Si heat-resistant aluminum alloy components fabricated by selective laser melting. J Mater Res. 2015;30(10):1661.

    Article  CAS  Google Scholar 

  15. Cao X, Wallace W, Immarigeon JP, Poon C. Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties. Mater Manuf Process. 2003;18(1):23.

    Article  CAS  Google Scholar 

  16. Wang J, Wang HP, Wang X, Cui H, Lu F. Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy. Opt Laser Eng. 2015;66:15.

    Article  CAS  Google Scholar 

  17. Kou S. Welding Metallurgy. 2nd ed. Hoboken: Wiley; 2003. 50.

    Google Scholar 

  18. Ghost SK, Partha S. Crack and wear behavior of SiC particulate reinforced aluminum based metal matrix composite fabricated by direct laser sintering process. Mater Des. 2012;32(1):139.

    Google Scholar 

  19. Yaneva S, Petrov K, Petrov R, Stoichev N, Avdeev G, Kuziak R. Influence of silicon content on phase development in Al–Fe–V–Si alloys. Mater Sci Eng A. 2009;515(1):59.

    Article  Google Scholar 

  20. Lu Y, Wu S, Gan Y, Huang T, Yang C, Junjie L, Lin J. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy. Opt Laser Eng. 2015;75:197.

    Article  CAS  Google Scholar 

  21. Mei Y, Liu Y, Liu C, Li C, Yu L, Guo Q, Li H. Effect of base metal and welding speed on fusion zone microstructure and HAZ hot-cracking of electron-beam welded Inconel 718. Mater Des. 2016;89:964.

    Article  CAS  Google Scholar 

  22. Hussein A, Hao L, Yan C, Everson R. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des. 2013;52:638.

    Article  CAS  Google Scholar 

  23. Alimardani M, Toyserkani E, Huissoon JP, Paul CP. On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: an experimental-numerical investigation. Opt Laser Eng. 2009;47(11):1160.

    Article  Google Scholar 

  24. Mercelis P, Kruth JP. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J. 2006;12(5):254.

    Article  Google Scholar 

  25. Harrison NJ, Todd I, Mumtaz K. Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach. Acta Mater. 2015;94:59.

    Article  CAS  Google Scholar 

  26. Moat RJ, Pinkerton AJ, Li L, Withers PJ, Preuss M. Residual stresses in laser direct metal deposited Waspaloy. Mater Sci Eng A. 2011;528(6):2288.

    Article  Google Scholar 

  27. Ding J, Colegrove P, Mehnen J, Ganguly S, Almeida PS, Wang F, Williams S. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci. 2011;50(12):3315.

    Article  CAS  Google Scholar 

  28. Yang J, Li F, Wang Z, Zeng X. Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication. J Mater Process Technol. 2015;225:229.

    Article  CAS  Google Scholar 

  29. Jia QB, Gu DD. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. J Alloys Compd. 2014;585:713.

    Article  CAS  Google Scholar 

  30. Hu B, Richardson IM. Mechanism and possible solution for transverse solidification cracking in laser welding of high strength aluminium alloys. Mater Sci Eng A. 2006;429(1):287.

    Article  Google Scholar 

  31. Wang F, Zhu BH, Xiong BQ, Zhang YG, Liu HW, Zhang RH. An investigation on the microstructure and mechanical properties of spray-deposited Al–8.5Fe–1.1V–1.9Si alloy. J Mater Process Technol. 2007;183(2–3):386.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National High-Tech Program of China (No. 21100002013101006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Jing Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, SB., Zheng, LJ., Liu, JH. et al. Microstructure, cracking behavior and control of Al–Fe–V–Si alloy produced by selective laser melting. Rare Met. 42, 1353–1362 (2023). https://doi.org/10.1007/s12598-016-0846-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0846-9

Keywords

Navigation