Skip to main content
Log in

Influence of Modified Microstructures and Characterized Defects on Tensile Properties and Anisotropy of Selective Laser Melting-Produced Ti6Al4V Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The influences of selective laser melting (SLM) processing and post-processing on microstructure, crystallographic texture and defect characteristic, as well as the tensile property and anisotropy of SLM-produced Ti6Al4V alloys, were extensively studied. The results showed that the microstructure and the defects including micropore, keyhole and lack of fusion (LOF) can be controlled through the optimization of SLM processing and post-processing procedures. Mechanical tests demonstrated that the tensile properties were dependent mostly on the features of α phase/colony which could result in two types of fracture modes. The laminar heat-affected zone (HAZ) and LOF caused by SLM processing should be responsible for the anisotropy in strength and ductility, respectively. However, the presence of columnar grain structure, inherited weak texture, micropore and keyhole has limited effect on the tensile behaviors. The anisotropy can be alleviated through coarsening α phase, forming α colony and controlling defects such as the laminar HAZ and LOF with various process parameters and heat treatment procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

References

  1. A. Busachi, J. Erkoyuncu, P. Colegrove, F. Martina, C. Watts, and R. Drake, A Review of Additive Manufacturing Technology and Cost Estimation Techniques for the Defence Sector, CIRP J. Manuf. Sci. Technol., 2017, 19, p 117–128.

    Article  Google Scholar 

  2. B. Baufeld, O. Van der Biest and R. Gault, Additive Manufacturing of Ti-6Al-4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties, Mat. Des., 2010, 31, p S106–S111.

    Article  CAS  Google Scholar 

  3. A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf, On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting, Eng. Fract. Mech., 2014, 120, p 15–25.

    Article  Google Scholar 

  4. K. Rajaguru, T. Karthikeyan, and V. Vijayan, Additive Manufacturing - State of Art, Mater. Today Proc., 2019, 21, p 628–633. (In press)

    Article  Google Scholar 

  5. J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs, Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing, CIRP Ann. - Manuf. Technol., 2007, 56, p 730–759.

    Article  Google Scholar 

  6. S. Bodziak, K.S. Al-Rubaie, L.V.O.D. Valentina, F.H. Lafratta, E.C. Santos, and A.M. Zanatta, Precipitation in 300 Grade Maraging Steel Built by Selective Laser Melting: Aging at 510 °C for 2 h, Mater. Charact., 2019, 151, p 73–83.

    Article  CAS  Google Scholar 

  7. H. Shipley, D. McDonnell, M. Culleton, R. Coull, R. Lupoi, G. O’Donnell, and D. Trimble, Optimisation of Process Parameters to Address Fundamental Challenges during SELECTIVE Laser Melting of Ti-6Al-4V: A Review, Int. J. Mach. Tools Manuf., 2018, 128, p 1–20.

    Article  Google Scholar 

  8. C.N. Chi, M. Savalani, and H.C. Man, Fabrication of Magnesium Using Selective Laser Melting Technique, Rapid Prototyp. J., 2011, 17, p 479–490.

    Article  Google Scholar 

  9. J.F. Sun, Y.Q. Yang, and D. Wang, Mechanical Properties of Ti6Al4V Octahedral Porous Material Unit Formed by Selective Laser Melting, Adv. Mech. Eng., 2012, 4, p 742–760.

    Article  Google Scholar 

  10. Z.Y. Xie, Y. Dai, X.Q. Ou, S. Ni, and M. Song, Effects of Selective Laser Melting Build Orientations on the Microstructure and Tensile Performance of Ti-6Al-4V Alloy, Mater. Sci. Eng. A., 2020, 776, p 139001.

    Article  CAS  Google Scholar 

  11. A. Khorasani, I. Gibson, M. Goldberg, and G. Littlefair, Production of Ti-6Al-4V Acetabular Shell using Selective Laser Melting: Possible Limitations in Fabrication, Rapid. Prototyp. J., 2017, 23, p 110–121.

    Article  Google Scholar 

  12. E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, A Review on selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties, Prog. Mater. Sci., 2015, 74, p 401–477.

    Article  CAS  Google Scholar 

  13. M. Peters, J. Kumpfert, C.H. Ward, and C. Leyens, Titanium Alloys for Aerospace Applications, Adv. Eng. Mater., 2003, 5, p 419–427.

    Article  CAS  Google Scholar 

  14. K.S. Al-Rubaie, S. Melotti, A. Rabelo, and J.M. Paiva, Machinability of SLM-Produced Ti6Al4V Titanium Alloy Parts, J. Manuf. Processes., 2020, 57, p 768–786.

    Article  Google Scholar 

  15. P. Ponnusamy, B. Sharma, S.H. Masood, R.A. Rahman Rashid, R. Rashid, S. Palanisamy, and D. Ruan, A Study of Tensile Behavior of SLM Processed 17–4 PH Stainless Steel, Mater. Today Proc., 2021, 45, p 4531–4534.

    Article  CAS  Google Scholar 

  16. R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.P. Kruth, and J. Van Humbeeck, Influence of Powder Bed Preheating on Microstructure and Mechanical Properties of H13 Tool Steel SLM Parts, Phys. Proc., 2016, 83, p 882–890.

    Article  CAS  Google Scholar 

  17. K. Kempen, B. Vrancken, S. Buls, L. Thijs, J. Van Humbeeck, and J.P. Kruth, Selective Laser Melting of Crack-Free High Density M2 High Speed Steel Parts by Baseplate Preheating, J. Manuf. Sci. Eng., 2014, 136, p 061026–061036.

    Article  Google Scholar 

  18. X. Tang, S. Zhang, C.H. Zhang, J. Chen, J.B. Zhang, and Y. Liu, Optimization of Laser Energy Density and Scanning Strategy on the Forming Quality of 24CrNiMo Low Alloy Steel Manufactured by SLM, Mater. Charact., 2020, 170, p 110718.

    Article  CAS  Google Scholar 

  19. M. Ghayoor, K. Lee, Y.J. He, C.H. Chang, B.K. Paul, and S. Pasebani, Selective Laser Melting of 304L Stainless Steel: Role of Volumetric Energy Density on the Microstructure, Texture and Mechanical Properties, Addit. Manuf., 2020, 32, p 101011.

    CAS  Google Scholar 

  20. K.S. Al-Rubaie, S. Melotti, A. Rabelo, J.M. Paiva, M.A. Elbestawi, and S.C. Veldhuis, Machinability of SLM-Produced Ti6Al4V Titanium Alloy Parts, J. Manuf. Processes., 2020, 57, p 768–786.

    Article  Google Scholar 

  21. J. Han, J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, and X. Zeng, Microstructure and Mechanical Property of Selective Laser Melted Ti6Al4V Dependence on Laser Energy Density, Rapid Prototyp. J., 2017, 23, p 1–21.

    Article  Google Scholar 

  22. M. Tang, P.C. Pistorius, and J.L. Beuth, Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion, Addit. Manuf., 2017, 14, p 39–48.

    CAS  Google Scholar 

  23. T. Vilaro, C. Colin, and J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metall. Mater. Trans. A., 2011, 42, p 3190–3199.

    Article  CAS  Google Scholar 

  24. D. Greitemeier, F. Palm, F. Syassen, and T. Melz, Fatigue Performance of Additive Manufactured TiAl6V4 Using Electron and Laser Beam Melting, Int. J. Fatigue., 2017, 94, p 211–217.

    Article  CAS  Google Scholar 

  25. S. Palanivel, A.K. Dutt, E.J. Faierson, and R.S. Mishra, Spatially Dependent Properties in a Laser Additive Manufactured Ti-6Al-4V Component, Mater. Sci. Eng. A., 2016, 654, p 39–52.

    Article  CAS  Google Scholar 

  26. M. Simonelli, Y.Y. Tse, and C. Tuck, Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti-6Al-4V, Mater. Sci. Eng. A., 2014, 616, p 1–11.

    Article  CAS  Google Scholar 

  27. A.M. Khorasani, I. Gibson, A. Ghaderi, and M.I. Mohammed, Investigation on the Effect of Heat Treatment and Process Parameters on the Tensile Behaviour of SLM Ti-6Al-4V Parts, Int. J. Adv. Manuf. Technol., 2019, 101, p 3183–3197.

    Article  Google Scholar 

  28. C. Qiu, N.J.E. Adkins, and M.M. Attallah, Microstructure and Tensile Properties of Selectively Laser-Melted and of HIPed Laser-Melted Ti-6Al-4V, Mater. Sci. Eng. A., 2013, 578, p 230–239.

    Article  CAS  Google Scholar 

  29. T. Etter, K. Kunze, F. Geiger, and H. Meidani, Reduction in Mechanical Anisotropy Through High Temperature Heat Treatment of Hastelloy X Processed by Selective Laser Melting (SLM), IOP Conf. Ser. Mater. Sci. Eng., 2015, 82, p 1–4.

    Article  Google Scholar 

  30. J. Mezzetta, J.P. Choi, J. Milligan, J. Danovitch, N. Chekir, A. Bois-Brochu, Y.F. Zhao, and M. Brochu, Microstructure-Properties Relationships of Ti-6Al-4V Parts Fabricated by Selective Laser Melting, Int. J. Precis. Eng. Manuf. Green Technol., 2018, 5, p 605–612.

    Article  Google Scholar 

  31. G.E. Bean, T.D. McLouth, D.B. Witkin, S.D. Sitzman, P.M. Adams, and R.J. Zaldivar, Build Orientation Effects on Texture and Mechanical Properties of Selective Laser Melting Inconel 718, J. Mater. Eng. Perform., 2019, 28, p 1942–1949.

    Article  CAS  Google Scholar 

  32. M. Simonelli, Y.Y. Tse, and C. Tuck, On the Texture Formation of Selective Laser Melted Ti-6Al-4V, Metall. Mater. Trans. A., 2014, 45, p 2863–2872.

    Article  CAS  Google Scholar 

  33. M.R. Daymond, R.A. Holt, S. Cai, P. Mosbrucker, and S.C. Vogel, Texture Inheritance and Variant Selection Through an hcp-bcc-hcp Phase Transformation, Acta Mater., 2010, 58, p 4053–4066.

    Article  CAS  Google Scholar 

  34. B.B. He, W.H. Wu, L. Zhang, L. Lu, Q.Y. Yang, Q.L. Long, and K. Chang, Microstructural Characteristic and Mechanical Property of Ti6Al4V Alloy Fabricated by Selective Laser Melting, Vacuum, 2018, 150, p 79–83.

    Article  CAS  Google Scholar 

  35. P. Krakhmalev, G. Fredriksson, I. Yadroitsava, N. Kazantseva, A.D. Plessis, and I. Yadroitsev, Deformation Behavior and Microstructure of Ti6Al4V Manufactured by SLM, Phys. Proc., 2016, 83, p 778–788.

    Article  CAS  Google Scholar 

  36. B. Vrancken, L. Thijs, J.P. Kruth, and J.V. Humbeeck, Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties, J. Alloys Compd., 2012, 541, p 177–185.

    Article  CAS  Google Scholar 

  37. Y. Yang, Y.J. Liu, J. Chen, H.L. Wang, Z.Q. Zhang, Y.J. Lu, S.Q. Wu, and J.X. Lina, Crystallographic Features of α Variants and β Phase for Ti-6Al-4V Alloy Fabricated by Selective Laser Melting, Mater. Sci. Eng. A., 2017, 707, p 548–558.

    Article  CAS  Google Scholar 

  38. L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker, Microstructure and Mechanical Behavior of Ti-6Al-4V Produced by Rapid-Layer Manufacturing for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2009, 2, p 20–32.

    Article  CAS  Google Scholar 

  39. H. Attar, M. Calin, L. Zhang, S. Scudino, and J. Eckert, Manufacture by Selective Laser Melting and Mechanical Behavior of Commercially Pure Titanium, Mater. Sci. Eng. A., 2014, 593, p 170–177.

    Article  CAS  Google Scholar 

  40. B.V. Hooreweder, D. Moens, R. Boonen, J.P. Kruth, and P. Sas, Analysis of Fracture Toughness and Crack Propagation of Ti6Al4V Produced by Selective Laser Melting, Adv. Eng. Mater., 2012, 14, p 92–97.

    Article  Google Scholar 

  41. S.C. Wang, M. Aindow, and M.J. Starink, Effect of Self-accommodation on α/α Boundary Populations in Pure Titanium, Acta Mater., 2003, 51, p 2485–2503.

    Article  CAS  Google Scholar 

  42. B. Zhou, J. Zhou, H. Li, and F. Lin, A study of the Microstructures and Mechanical Properties of Ti6Al4V Fabricated by SLM Under Vacuum, Mater. Sci. Eng. A., 2018, 724, p 1–10.

    Article  CAS  Google Scholar 

  43. K.F. Walker, Q. Liu, and M. Brandt, Evaluation of Fatigue Crack Propagation Behavior in Ti-6Al-4V Manufactured by Selective Laser Melting, Int. J. Fatigue., 2017, 104, p 302–308.

    Article  CAS  Google Scholar 

  44. C. Zhao, N.D. Parab, X.X. Li, K. Fezzaa, W.D. Tan, A.D. Rollett, and T. Sun, Critical Instability at Moving Keyhole Tip Generates Porosity in Laser Melting, Science, 2020, 370, p 1080–1086.

    Article  Google Scholar 

  45. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57, p 133–164.

    Article  CAS  Google Scholar 

  46. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Forming Mechanisms of Pores, Spatter, and Denudation Zones, Acta Mater., 2016, 108, p 36–45.

    Article  CAS  Google Scholar 

  47. I. Maskery, N.T. Aboulkhair, M.R. Corfield, C. Tuck, A.T. Clare, R.K. Leach, R.D. Wildman, I.A. Ashcroft, and R.J.M. Hague, Quantification and Characterisation of Porosity in Selectively Laser Melted Al-Si10-Mg Using X-ray Computed Tomography, Mater. Charact., 2016, 111, p 193–204.

    Article  CAS  Google Scholar 

  48. S. Bo, S. Dong, B. Zhang, H. Liao, and C. Coddet, Effects of Processing Parameters on Microstructure and Mechanical Property of Selective Laser Melted Ti6Al4V, Mater. Des., 2012, 35, p 120–125.

    Article  Google Scholar 

  49. D. Banerjee and J. Williams, Perspectives on Titanium Science and Technology, Acta Mater., 2013, 61, p 844–879.

    Article  CAS  Google Scholar 

  50. G. Lütjering, Property Optimization Through Microstructural Control in Titanium and Aluminum Alloys, Mater. Sci. Eng. A, 1999, 243, p 117–126.

    Article  Google Scholar 

  51. E. Chlebus, B. Kuźnicka, T. Kurzynowski, and B. Dybała, Microstructure and Mechanical Behaviour of Ti-6Al-7Nb Alloy Produced by Selective Laser Melting, Mater. Charact., 2011, 62, p 488–495.

    Article  CAS  Google Scholar 

  52. T. Sercombe, N. Jones, R. Day, and A. Kop, Heat Treatment of Ti-6Al-7Nb Components Produced by Selective Laser Melting, Rapid Prototyp. J., 2008, 14, p 300–304.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank for the contributions of BLT Company China and HFYC (Zhenjiang) Additive Manufacturing Co., Ltd (AEAM) in manufacturing of designated alloys and providing heat treatment services.

Funding

This work is supported by the financial support from AECC Science and Technology Innovation Platform Program (CXPT-2018-42) and National Natural Science Foundation of China (Grant No. 51875541).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujun Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Consent for Publication

Written informed consent for publication was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Tao, C., Wu, S. et al. Influence of Modified Microstructures and Characterized Defects on Tensile Properties and Anisotropy of Selective Laser Melting-Produced Ti6Al4V Alloys. J. of Materi Eng and Perform 31, 7705–7718 (2022). https://doi.org/10.1007/s11665-022-06745-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06745-0

Keywords

Navigation