Skip to main content
Log in

THz generation by nonlinear mixing of obliquely incident laser beams in the closely-packed assemblage of anharmonic upright CNTs

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A theoretical scheme of terahertz (THz) generation by the nonlinear mixing of obliquely incident laser beams in the closely-packed assemblage of anharmonic upright carbon nanotubes (CNTs) is examined. In the scheme, anharmonicity is explained on the basis of the nonlinear variation of restoration force on the electrons of upright CNTs and it is observed to play a pivotal role in the enhancement of THz generation. The laser beams incident obliquely at some angle \({\prime}{\theta {\prime}}\) on the closely-packed assemblage of upright CNTs forested over the non-conductive sapphire or silicon on sapphire (SOS) substrate so that each upright CNT of the assemblage exhibits the oscillatory behavior. The proposed scheme is quite suitable for generating efficient THz radiations at optimized values of the laser beams, plasma, and CNTs parameters. The absorption of obliquely incident laser beams by the closely-packed assemblage of upright CNTs is observed to attain its peak at the specific angle of incidence known as the critical angle and in the present scheme it is \(\uptheta ={44.3}^{{{o}}}\). We also explore the impact of interior radius, exterior radius, critical angle, and length of CNTs and some other related parameters with energy efficiency on the THz generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data underlying the results presented in this manuscript may be obtained from the authors after making a reasonable request.

References

  1. S. Kumar, S. Vij, N. Kant, V. Thakur, Nonlinear interaction of amplitude-modulated Gaussian laser beam with anharmonic magnetized and rippled CNTs: THz generation. Braz. J. Phys. 53, 37 (2023). https://doi.org/10.1007/s13538-022-01252-yZ

    Article  ADS  Google Scholar 

  2. B.H. Liu, Y. Chen, G.J. Bastiaans, X.C. Zhang, Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. Opt. Express 14, 415–423 (2006). https://doi.org/10.1364/OPEX.14.000415

    Article  ADS  Google Scholar 

  3. C. Baker et al., Detection of concealed explosives at a distance using terahertz technology. Proc. IEEE 95, 1559 (2007). https://doi.org/10.1109/JPROC.2007.900329

    Article  Google Scholar 

  4. Y. Huang, Y. Shen, J. Wang, From terahertz imaging to terahertz wireless communications. Engineering 22, 106–124 (2023). https://doi.org/10.1016/j.eng.2022.06.023

    Article  Google Scholar 

  5. S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron. 43, 30 (2022). https://doi.org/10.1007/s12036-022-09805-y

    Article  ADS  Google Scholar 

  6. V. Thakur, S. Vij, N. Kant, S. Kumar, THz generation by propagating lasers through magnetized SWCNTs. Indian J. Phys. 97, 2191–2196 (2023). https://doi.org/10.1007/s12648-022-02575-x

    Article  ADS  Google Scholar 

  7. S. Kumar, N. Kant, V. Thakur, THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs. Opt. Quant. Electron. 55, 281 (2023). https://doi.org/10.1007/s11082-023-04562-w

    Article  Google Scholar 

  8. L. Zhao, R. Yi, S. Liu, Y. Chi, S. Tan, J. Dong, H. Wang, J. Zhang, H. Wang, X. Xu, B. Yao, B. Wang, R. Peng, Biological responses to terahertz radiation with different power density in primary hippocampal neurons. PLoS ONE 20, 18 (2023). https://doi.org/10.1371/journal.pone.0267064

    Article  Google Scholar 

  9. S. Kumar, N. Kant, V. Thakur, Magnetically enhanced THz generation by self-focusing laser in VA-MCNTs. Phys. Scr. 98, 085506 (2023). https://doi.org/10.1088/1402-4896/ace1ae

    Article  ADS  Google Scholar 

  10. A. Krotkus, I. Nevinskas, R. Norkus, Semiconductor characterization by terahertz excitation spectroscopy. Materials 16, 2859 (2023). https://doi.org/10.3390/ma16072859Y

    Article  ADS  Google Scholar 

  11. S. Kumar, S. Vij, N. Kant, A. Mehta, V. Thakur, Resonant terahertz generation from laser filaments in the presence of static electric field in a magnetized collisional plasma. Euro Phys. J. Plus 136, 148 (2021). https://doi.org/10.1140/epjp/s13360-021-01089-5

    Article  Google Scholar 

  12. S. Kumar, N. Kant, V. Thakur, Electric field-induced strong THz emission by beating two filamented spatial-Gaussian lasers in the pre-existing underdense magnetized plasma. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01334-3

    Article  Google Scholar 

  13. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant excitation of THz radiations by interaction of amplitude-modulated lasers with an anharmonic CNTs in the presence of static D.C. electric and magnetic fields. Chin. J. Phys. 78, 453–462 (2022). https://doi.org/10.1016/j.cjph.2022.06.004

    Article  MathSciNet  Google Scholar 

  14. S. Kumar et al., Production of terahertz radiations by short pulse lasers. J. Phys. Conf. Ser. 1531, 12011 (2020). https://doi.org/10.1088/1742-6596/1531/1/012011

    Article  Google Scholar 

  15. G. Hanson, Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag. 53(11), 3426–3435 (2005). https://doi.org/10.1109/TAP.2005.858865

    Article  ADS  Google Scholar 

  16. S.V. Bulyarskii, A.A. Dudin, A.P. Orlov, A.A. Pavlov, V.L. Leont’ev, Forced vibration of a carbon nanotube with emission currents in an electromagnetic field. Tech. Phys. 62(11), 1627–1630 (2017). https://doi.org/10.1134/S1063784217110056

    Article  Google Scholar 

  17. S. Vij, N. Kant, V. Thakur, Resonant enhancement of THz radiation through vertically aligned carbon nanotubes array by applying wiggler magnetic field. Plasmonics 14, 1051–1056 (2019). https://doi.org/10.1007/s11468-018-0892-2

    Article  Google Scholar 

  18. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube. Plasmonics (2021). https://doi.org/10.1007/s11468-021-01529-z

    Article  Google Scholar 

  19. S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of spatial-Gaussian lasers with the magnetized CNTs in the presence of DC electric field and enhanced THz emission. Phys. Scr. 98, 015015 (2023). https://doi.org/10.1088/1402-4896/aca93d

    Article  ADS  Google Scholar 

  20. S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of obliquely incident lasers with anharmonic CNTs acting as dipole antenna to generate resonant THz radiation. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2155330

    Article  Google Scholar 

  21. M. Dragoman, D. Dragoman, Carbon nanotube resonant-tunneling diodes as terahertz oscillators. Int. Semicond. Conf. 1, 75–78 (2003). https://doi.org/10.1109/SMICND.2003.1251348

    Article  Google Scholar 

  22. Y. Wang, Q. Wu, Properties of terahertz wave generated by the metallic carbon nanotube antenna. Chin. Opt. Lett. 8, 770 (2008)

    Article  Google Scholar 

  23. R. Malik, R. Uma, THz generation by laser coupling to carbon nanotube array. Phys. Plasmas 25, 013106 (2018). https://doi.org/10.1063/1.4997812

    Article  ADS  Google Scholar 

  24. S Reich, C Thomson, J Maultzsch, Carbon nanotubes: basic concepts and physical properties,” Wiley VCH (2004)

  25. C.S. Liu, V.K. Tripathi, Observational consequences of parametrically driven vibrations of carbon nanotubes. Phys. Rev. B 70, 115414 (2004). https://doi.org/10.1103/PhysRevB.70.115414

    Article  ADS  Google Scholar 

  26. H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218 (2002). https://doi.org/10.1016/S0039-6028(01)01558-8

    Article  ADS  Google Scholar 

  27. Y. Murakami, E. Einarsson, T. Edamura, S. Maruyama, Polarization dependent optical absorption propagation of single walled CNTs and methods foe evaluation of their morphology. Carbon 43, 2664–2676 (2005). https://doi.org/10.1016/j.carbon.2005.05.036

    Article  Google Scholar 

  28. K. Kempa et al., Carbon nanotubes as optical antennae. Adv. Mater. 19, 421–426 (2007). https://doi.org/10.1002/adma.200601187

    Article  Google Scholar 

  29. Y. Lan, B. Zeng, H. Zeng, B. Chen, Z. Yang, Simulation of carbon nanotube THz antenna arrays. Int. J. Infrared Millim Waves 27, 871–877 (2007). https://doi.org/10.1007/s10762-006-9123-6

    Article  ADS  Google Scholar 

  30. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by cross-focusing of Gaussian laser beams in the array of vertically aligned anharmonic and magnetized CNTs. Opt. Commun. 513, 1282022 (2022). https://doi.org/10.1016/j.optcom.2022.128112

    Article  Google Scholar 

  31. V. Thakur, N. Kant, S. Kumar, THz field enhancement under the influence of cross-focused laser beams in the m-CNTs. Trends Sci. 20(6), 5284 (2023). https://doi.org/10.48048/tis.2023.5284

    Article  Google Scholar 

Download references

Funding

No funding source is available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, V., Kumar, S. THz generation by nonlinear mixing of obliquely incident laser beams in the closely-packed assemblage of anharmonic upright CNTs. J Opt (2023). https://doi.org/10.1007/s12596-023-01558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01558-3

Keywords

Navigation