Skip to main content
Log in

A comprehensive tutorial on the pulsed laser deposition technique and developments in the fabrication of low dimensional systems and nanostructures

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Pulsed laser deposition (PLD) is a simple and extremely versatile technique to grow thin films and nanomaterials of a wide variety of materials. PLD allows the deposition of profoundly different materials, including high-temperature superconductors, oxides, nitrides, carbides, semiconductors, metals, and even polymers or fullerenes with high deposition rates. Growing thin films using PLD is now being used around the world for prototyping thin films of many inorganic materials and even in device fabrication protocols. This article covers the detailed development, versatility, and reliability of the ultraviolet (UV) excimer laser. It is envisioned that this review article is of interest for both the materials and chemical scientists engaged in more fundamental aspects of pulsed laser ablation and deposition. The present article highlights the historical developments of PLD technique, complete mechanism of thin film fabrication, optimization of the quality of thin films and the fabrication of thin films of the materials like ZnO, Graphene, MoS2, and WS2 which are being explored for various potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.L. Schawlow, C.H. Townes, Infrared and optical masers. Phys. Rev. 112(6), 1940–1949 (1958)

    Article  CAS  Google Scholar 

  2. F. Breech, L. Cross, Optical microemission stimulated by a ruby maser. Appl. Spectrosc. 16(59), 1 (1962)

    Google Scholar 

  3. H. Mavi et al., Surface morphology and formation of GaAs nanocrystals by laser-induced etching: SEM, PL and Raman studies. Mater. Sci. Eng. B 107(2), 148–154 (2004)

    Article  CAS  Google Scholar 

  4. R. Kostecki, X. Song, K. Kinoshita, Fabrication of interdigitated carbon structures by laser pyrolysis of photoresist. Electrochem. Solid-State Lett. 5(6), E29–E31 (2002)

    Article  CAS  Google Scholar 

  5. H. Mavi et al., Continuous wave laser-induced temperature rise in the thin films of silicon nanocrystals using Raman scattering. Thin Solid Films 425(1-2), 90–96 (2003)

    Article  CAS  Google Scholar 

  6. R. Lahoz, J.P. Espinós, G.F. de la Fuente, A.R. González-Elipe, “in situ” XPS studies of laser induced surface cleaning and nitridation of Ti. Surf. Coat. Technol. 202(8), 1486–1492 (2008)

    Article  CAS  Google Scholar 

  7. P.V. Kamat, M. Flumiani, G.V. Hartland, Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. J. Phys. Chem. B 102(17), 3123–3128 (1998)

    Article  CAS  Google Scholar 

  8. H. Fujiwara, S. Yanagida, P.V. Kamat, Visible laser induced fusion and fragmentation of thionicotinamide-capped gold nanoparticles. J. Phys. Chem. B 103(14), 2589–2591 (1999)

    Article  CAS  Google Scholar 

  9. A. Takami, H. Kurita, S. Koda, Laser-induced size reduction of noble metal particles. J. Phys. Chem. B 103(8), 1226–1232 (1999)

    Article  CAS  Google Scholar 

  10. C. Lu, X.K. Hu, I.V. Mitchell, R.H. Lipson, Diffraction element assisted lithography: pattern control for photonic crystal fabrication. Appl. Phys. Lett. 86(19), 193110 (2005)

    Article  CAS  Google Scholar 

  11. R. Tambay, R. Singh, R. Thareja, Studies on recombining Al-plasma using 1.06, 0.532, 0.355, and 0.266 μm laser radiation. J. Appl. Phys. 72(3), 1197–1199 (1992)

    Article  CAS  Google Scholar 

  12. T. Tsuji, K. Iryo, Y. Nishimura, M. Tsuji, Preparation of metal colloids by a laser ablation technique in solution: influence of laser wavelength on the ablation efficiency (II). J. Photochem. Photobiol. A Chem. 145(3), 201–207 (2001)

    Article  CAS  Google Scholar 

  13. A.Y. Vorobyev, C. Guo, Femtosecond laser nanostructuring of metals. Opt. Express 14(6), 2164–2169 (2006)

    Article  CAS  Google Scholar 

  14. M.A. Seo et al., Polarization-induced size control and ablation dynamics of Ge nanostructures formed by a femtosecond laser. Opt. Express 14(8), 3694–3699 (2006)

    Article  CAS  Google Scholar 

  15. C.-C. Huang, C.-S. Yeh, C.-J. Ho, Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide. J. Phys. Chem. B 108(16), 4940–4945 (2004)

    Article  CAS  Google Scholar 

  16. Y. Yamagata, A. Sharma, J. Narayan, R.M. Mayo, J.W. Newman, K. Ebihara, Comparative study of pulsed laser ablated plasma plumes from single crystal graphite and amorphous carbon targets. Part I. Optical emission spectroscopy. J. Appl. Phys. 88(11), 6861–6867 (2000)

    Article  CAS  Google Scholar 

  17. J. Zheng et al., Role of the oxygen atomic beam in low-temperature growth of superconducting films by laser deposition. Appl. Phys. Lett. 54(10), 954–956 (1989)

    Article  CAS  Google Scholar 

  18. D. Chakraborti, J. Narayan, J. Prater, Room temperature ferromagnetism in Zn 1− x Cu x O thin films. Appl. Phys. Lett. 90(6), 062504 (2007)

    Article  CAS  Google Scholar 

  19. J.T. Knudtson, W.B. Green, D.G. Sutton, The UV-visible spectroscopy of laser-produced aluminum plasmas. J. Appl. Phys. 61(10), 4771–4780 (1987)

    Article  CAS  Google Scholar 

  20. J. Bengoechea, C. Aragón, J. Aguilera, Asymmetric Stark broadening of the Fe I 538.34 nm emission line in a laser induced plasma. Spectrochim. Acta B At. Spectrosc. 60(7-8), 897–904 (2005)

    Article  CAS  Google Scholar 

  21. C. Pasquini, J. Cortez, L.M.C. Silva, F.B. Gonzaga, Laser induced breakdown spectroscopy. J. Braz. Chem. Soc. 18(3), 463–512 (2007)

    Article  CAS  Google Scholar 

  22. Y.-I. Lee, S.P. Sawan, T.L. Thiem, Y.Y. Teng, J. Sneddon, Interaction of a laser beam with metals. Part II: Space-resolved studies of laser-ablated plasma emission. Appl. Spectrosc. 46(3), 436–441 (1992)

    Article  CAS  Google Scholar 

  23. P.L. Ventzek et al., Laser-beam deflection measurements and modeling of pulsed laser ablation rate and near-surface plume densities in vacuum. J. Appl. Phys. 70(2), 587–593 (1991)

    Article  CAS  Google Scholar 

  24. N.M. Shaikh, B. Rashid, S. Hafeez, Y. Jamil, M.A. Baig, Measurement of electron density and temperature of a laser-induced zinc plasma. J. Phys. D. Appl. Phys. 39(7), 1384–1391 (2006)

    Article  CAS  Google Scholar 

  25. N.M. Shaikh, B. Rashid, S. Hafeez, S. Mahmood, M. Saleem, M.A. Baig, Diagnostics of cadmium plasma produced by laser ablation. J. Appl. Phys. 100(7), 073102 (2006)

    Article  CAS  Google Scholar 

  26. N.M. Shaikh, S. Hafeez, M. Baig, Comparison of zinc and cadmium plasma parameters produced by laser-ablation. Spectrochim. Acta B At. Spectrosc. 62(12), 1311–1320 (2007)

    Article  CAS  Google Scholar 

  27. J. Bengoechea, J. Aguilera, C. Aragón, Application of laser-induced plasma spectroscopy to the measurement of Stark broadening parameters. Spectrochim. Acta B At. Spectrosc. 61(1), 69–80 (2006)

    Article  CAS  Google Scholar 

  28. J. Hopkins et al., Supersonic metal cluster beams of refractory metals: spectral investigations of ultracold Mo2. J. Chem. Phys. 78(4), 1627–1637 (1983)

    Article  CAS  Google Scholar 

  29. R. Thareja, Optical emissiom studies of molecular carbon (C2). Phys. Lett. A 184(1), 99–103 (1993)

    Article  Google Scholar 

  30. M. Cai, C.C. Carter, T.A. Miller, V.E. Bondybey, Fluorescence excitation and resolved emission spectra of supersonically cooled Al2O. J. Chem. Phys. 95(1), 73–79 (1991)

    Article  CAS  Google Scholar 

  31. G. Koren, A. Gupta, R.J. Baseman, M.I. Lutwyche, R.B. Laibowitz, Laser wavelength dependent properties of YBa2Cu3O7− δ thin films deposited by laser ablation. Appl. Phys. Lett. 55(23), 2450–2452 (1989)

    Article  CAS  Google Scholar 

  32. H. Adachi and K. Wasa, 1 thin films and nanomaterials. Handbook of Sputter Deposition Technology: Fundamentals and Applications for Functional Thin Films, Nano-Materials and MEMS, p. 1 (2012)

  33. R.K. Singh, J. Narayan, Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 41(13), 8843–8859 (1990)

    Article  CAS  Google Scholar 

  34. R. Eason, Pulsed laser deposition of thin films: applications-led growth of functional materials (Wiley, 2007)

  35. Z. Liu, C. Ong, Synthesis and size control of ZnO nanorods by conventional pulsed-laser deposition without catalyst. Mater. Lett. 61(16), 3329–3333 (2007)

    Article  CAS  Google Scholar 

  36. D. Yu, L. Hu, J. Li, H. Hu, H. Zhang, Z. Zhao, Q. Fu, Catalyst-free synthesis of ZnO nanorod arrays on InP (001) substrate by pulsed laser deposition. Mater. Lett. 62(25), 4063–4065 (2008)

    Article  CAS  Google Scholar 

  37. D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, M. Croft, Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high T c bulk material. Appl. Phys. Lett. 51(8), 619–621 (1987)

    Article  CAS  Google Scholar 

  38. C.R. Guarnieri, R.A. Roy, K.L. Saenger, S.A. Shivashankar, D.S. Yee, J.J. Cuomo, Thin-film Bi-Sr-Ca-Cu-O high-temperature superconductors using pulsed laser evaporation from sintered disks. Appl. Phys. Lett. 53(6), 532–533 (1988)

    Article  CAS  Google Scholar 

  39. C. Foster et al., Infrared reflection of epitaxial Tl2Ba2CaCu2O8 thin films in the normal and superconducting states. Solid State Commun. 76(5), 651–654 (1990)

    Article  CAS  Google Scholar 

  40. S. Shinde et al., Superconducting MgB 2 thin films by pulsed laser deposition. Appl. Phys. Lett. 79(2), 227–229 (2001)

    Article  CAS  Google Scholar 

  41. A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, J.F. Muth, Transparent, high mobility InGaZnO thin films deposited by PLD. Thin Solid Films 516(7), 1326–1329 (2008)

    Article  CAS  Google Scholar 

  42. E. Fogarassy, C. Fuchs, A. Slaoui, J.P. Stoquert, SiO2 thin-film deposition by excimer laser ablation from SiO target in oxygen atmosphere. Appl. Phys. Lett. 57(7), 664–666 (1990)

    Article  CAS  Google Scholar 

  43. M. Balooch, R.J. Tench, W.J. Siekhaus, M.J. Allen, A.L. Connor, D.R. Olander, Deposition of SiC films by pulsed excimer laser ablation. Appl. Phys. Lett. 57(15), 1540–1542 (1990)

    Article  CAS  Google Scholar 

  44. N. Biunno, J. Narayan, S.K. Hofmeister, A.R. Srivatsa, R.K. Singh, Low-temperature processing of titanium nitride films by laser physical vapor deposition. Appl. Phys. Lett. 54(16), 1519–1521 (1989)

    Article  CAS  Google Scholar 

  45. H. Kidoh, T. Ogawa, A. Morimoto, T. Shimizu, Ferroelectric properties of lead-zirconate-titanate films prepared by laser ablation. Appl. Phys. Lett. 58(25), 2910–2912 (1991)

    Article  CAS  Google Scholar 

  46. R. Ramesh, K. Luther, B. Wilkens, D.L. Hart, E. Wang, J.M. Tarascon, A. Inam, X.D. Wu, T. Venkatesan, Epitaxial growth of ferroelectric bismuth titanate thin films by pulsed laser deposition. Appl. Phys. Lett. 57(15), 1505–1507 (1990)

    Article  CAS  Google Scholar 

  47. J. Martin et al., Epitaxial growth of crystalline, diamond-like films on Si (100) by laser ablation of graphite. Appl. Phys. Lett. 57(17), 1742–1744 (1990)

    Article  CAS  Google Scholar 

  48. R.F. Curl, R.E. Smalley, Fullerenes. Sci. Am. 265(4), 54–63 (1991)

    Article  CAS  Google Scholar 

  49. S. Hansen, T. Robitaille, Formation of polymer films by pulsed laser evaporation. Appl. Phys. Lett. 52(1), 81–83 (1988)

    Article  CAS  Google Scholar 

  50. H.U. Krebs, O. Bremert, Pulsed laser deposition of thin metallic alloys. Appl. Phys. Lett. 62(19), 2341–2343 (1993)

    Article  CAS  Google Scholar 

  51. A. Geurtsen et al., Pulsed laser deposition of permanent magnetic Nd2Fe14B thin films. Appl. Surf. Sci. 96, 887–890 (1996)

    Article  Google Scholar 

  52. M.-Z. Xue, Y.N. Zhou, B. Zhang, L. Yu, H. Zhang, Z.W. Fu, Fabrication and electrochemical characterization of copper selenide thin films by pulsed laser deposition. J. Electrochem. Soc. 153(12), A2262–A2268 (2006)

    Article  CAS  Google Scholar 

  53. R. Hugo et al., In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater. 51(7), 1937–1943 (2003)

    Article  CAS  Google Scholar 

  54. R.K. Singh et al., Excimer laser deposition of hydroxyapatite thin films. Biomaterials 15(7), 522–528 (1994)

    Article  CAS  Google Scholar 

  55. K.Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata, K. Saito, Structural and multiferroic properties of BiFeO 3 thin films at room temperature. J. Appl. Phys. 96(6), 3399–3403 (2004)

    Article  CAS  Google Scholar 

  56. K. Youden et al., Pulsed laser deposition of Ga-La-S chalcogenide glass thin film optical waveguides. Appl. Phys. Lett. 63(12), 1601–1603 (1993)

    Article  CAS  Google Scholar 

  57. S. Li et al., Pulsed-laser deposition of crystalline Teflon (PTFE) films. Appl. Surf. Sci. 125(1), 17–22 (1998)

    Article  CAS  Google Scholar 

  58. R. Triboulet, J. Perriere, Epitaxial growth of ZnO films. Prog. Cryst. Growth Charact. Mater. 47(2-3), 65–138 (2003)

    Article  CAS  Google Scholar 

  59. S. Singh, P. Thiyagarajan, K. Mohan Kant, D. Anita, S. Thirupathiah, N. Rama, B. Tiwari, M. Kottaisamy, M.S. Ramachandra Rao, Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano. J. Phys. D. Appl. Phys. 40(20), 6312–6327 (2007)

    Article  CAS  Google Scholar 

  60. G. Yang, Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog. Mater. Sci. 52(4), 648–698 (2007)

    Article  CAS  Google Scholar 

  61. T. Ishiguro, T. Shoji, H. Inada, Synthesis of CN and Si-C films by pulsed laser ablation with frozen N2 and CH4 targets. Appl. Phys. A Mater. Sci. Process. 69(1), S149–S152 (1999)

    CAS  Google Scholar 

  62. K. Rodrigo, B. Toftmann, J. Schou, R. Pedrys, Laser-induced ion emission during polymer deposition from a flash-frozen water ice matrix. Chem. Phys. Lett. 399(4-6), 368–372 (2004)

    Article  CAS  Google Scholar 

  63. A. Einstein, Strahlungs-Emission und-Absorption nach der Quantentheorie, 17 Jul 1916 (1916)

  64. T.H. Maiman, Optical maser action in ruby. in Advances in Quantum Electronics (1961)

  65. H.M. Smith, A. Turner, Vacuum deposited thin films using a ruby laser. Appl. Opt. 4(1), 147–148 (1965)

    Article  Google Scholar 

  66. J. Cheung et al., HgTe and CdTe epitaxial layers and HgTe–CdTe superlattices grown by laser molecular beam epitaxy. J. Vac. Sci. Technol. A 4(4), 2086–2090 (1986)

    Article  CAS  Google Scholar 

  67. A. Inam, M.S. Hegde, X.D. Wu, T. Venkatesan, P. England, P.F. Miceli, E.W. Chase, C.C. Chang, J.M. Tarascon, J.B. Wachtman, As-deposited high T c and J c superconducting thin films made at low temperatures. Appl. Phys. Lett. 53(10), 908–910 (1988)

    Article  CAS  Google Scholar 

  68. J. Cheung, E.H. Cirlin, N. Otsuka, Structure of nonrectangular HgCdTe superlattices grown by laser molecular beam epitaxy. Appl. Phys. Lett. 53(4), 310–312 (1988)

    Article  CAS  Google Scholar 

  69. R. Nawathey, R.D. Vispute, S.M. Chaudhari, S.M. Kanetkar, S.B. Ogale, Pulsed laser deposition of barium titanate films on silicon. Solid State Commun. 71(1), 9–12 (1989)

    Article  CAS  Google Scholar 

  70. T. Paul, P. Bhattacharya, D. Bose, Characterization of pulsed laser deposited boron nitride thin films on InP. Appl. Phys. Lett. 56(26), 2648–2650 (1990)

    Article  CAS  Google Scholar 

  71. R.E. Russo, R.P. Reade, J.M. McMillan, B.L. Olsen, Metal buffer layers and Y-Ba-Cu-O thin films on Pt and stainless steel using pulsed laser deposition. J. Appl. Phys. 68(3), 1354–1356 (1990)

    Article  CAS  Google Scholar 

  72. X. Wu et al., Superlattices of Y-Ba-Cu-O/Y y-Pr1− y-Ba-Cu-O grown by pulsed laser deposition. Appl. Phys. Lett. 56(4), 400–402 (1990)

    Article  CAS  Google Scholar 

  73. S. Soltan, Interaction of superconductivity and ferromagnetism in YBCO-LCMO heterostructures. Cuvillier Verlag (2005)

  74. J.T. Cheung, I. Gergis, M. James, R.E. DeWames, Reproducible growth of high quality YBa2Cu3O 7− x film on (100) MgO with a SrTiO3 buffer layer by pulsed laser deposition. Appl. Phys. Lett. 60(25), 3180–3182 (1992)

    Article  CAS  Google Scholar 

  75. J.A. Greer and H.J. Van Hook, Laser-ablation of various oxide materials over large areas. MRS Online Proc. Lib. Arch. 191 (1990)

  76. Y. Zhang, H. Gu, S. Iijima, Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl. Phys. Lett. 73(26), 3827–3829 (1998)

    Article  CAS  Google Scholar 

  77. K. Wang, G. Tai, K.H. Wong, S.P. Lau, W. Guo, Ni induced few-layer graphene growth at low temperature by pulsed laser deposition. AIP Adv. 1(2), 022141 (2011)

    Article  CAS  Google Scholar 

  78. J. Yao et al., Stable, highly-responsive and broadband photodetection based on large-area multilayered WS 2 films grown by pulsed-laser deposition. Nanoscale 7(36), 14974–14981 (2015)

    Article  CAS  Google Scholar 

  79. G. Wahnström, Diffusion of an adsorbed particle: dependence on the adatom-substrate interaction. Phys. Rev. B 33(2), 1020–1025 (1986)

    Article  Google Scholar 

  80. T. Nishigaki et al., Measurement of piezoelectric properties of pulsed laser deposited hydroxyapatite thin films on platinum or titanium substrate. Bioceram. Dev. Appl. 1, 008 (2013)

    Google Scholar 

  81. P. Vorre, P. Illum, Carbon dioxide laser surgery of the tongue base. Lasers Med. Sci. 1(3), 203–205 (1986)

    Article  Google Scholar 

  82. L. Nistor et al., Deposition of hydroxyapatite thin films by Nd: YAG laser ablation: a microstructural study. Mater. Res. Bull. 39(13), 2089–2101 (2004)

    Article  CAS  Google Scholar 

  83. N. Subhash, K. Sathianandan, Thermal effects in a Nd: glass laser rod pumped in a double circular close-coupled cavity. IEEE J. Quantum Electron. 20(2), 111–116 (1984)

    Article  Google Scholar 

  84. X. Du, et al. Excimer laser annealing of perovskite thin films: morphology and gas-sensor properties. in Journal of Physics: Conference Series. IOP Publishing (2007)

  85. E. György et al., Particulates generation and solutions for their elimination in pulsed laser deposition. J. Optoelectron. Adv. Mater. 6(1), 39–46 (2004)

    Google Scholar 

  86. K.-R. Chen, J.N. Leboeuf, R.F. Wood, D.B. Geohegan, J.M. Donato, C.L. Liu, A.A. Puretzky, Mechanisms affecting kinetic energies of laser-ablated materials. J. Vac. Sci. Technol. A 14(3), 1111–1114 (1996)

    Article  CAS  Google Scholar 

  87. L. Forney, F. Droescher, Reactive plume model: effect of stack exit conditions on gas phase precursors and sulfate formation. Atmos. Environ. (1967) 19(6), 879–891 (1985)

    Article  CAS  Google Scholar 

  88. P. McKenna et al., Laser-plasma interactions and applications (Springer, 2013)

  89. H.E. Bennett, Laser induced damage in optical materials: Proceedings of a Symposium. Vol. 954. 1986: US Department of Commerce, National Bureau of Standards (1984)

  90. M. Bass, Laser materials processing. Vol. 3. Elsevier (2012)

  91. S. Zhu, Y. Lu, M. Hong, Laser ablation of solid substrates in a water-confined environment. Appl. Phys. Lett. 79(9), 1396–1398 (2001)

    Article  CAS  Google Scholar 

  92. D. Kim, H. Lee, Enhanced ablation and photoacoustic excitation in near-threshold laser ablation of liquid-coated surfaces. J. Appl. Phys. 89(10), 5703–5706 (2001)

    Article  CAS  Google Scholar 

  93. J. Wang, G. Yang, Phase transformation between diamond and graphite in preparation of diamonds by pulsed-laser induced liquid-solid interface reaction. J. Phys. Condens. Matter 11(37), 7089 (1999)

    Article  CAS  Google Scholar 

  94. C. Mitra, P. Raychaudhuri, J. John, S.K. Dhar, A.K. Nigam, R. Pinto, Growth of epitaxial and polycrystalline thin films of the electron doped system La 1− x Ce x MnO 3 through pulsed laser deposition. J. Appl. Phys. 89(1), 524–530 (2001)

    Article  CAS  Google Scholar 

  95. T. Jackson, S. Palmer, Oxide superconductor and magnetic metal thin film deposition by pulsed laser ablation: a review. J. Phys. D. Appl. Phys. 27(8), 1581–1594 (1994)

    Article  CAS  Google Scholar 

  96. D. Valerini, A. Cretì, A.P. Caricato, M. Lomascolo, R. Rella, M. Martino, Optical gas sensing through nanostructured ZnO films with different morphologies. Sensors Actuators B Chem. 145(1), 167–173 (2010)

    Article  CAS  Google Scholar 

  97. J. Singh, P.K. Srivastava, P.K. Siwach, H.K. Singh, R.S. Tiwari, O.N. Srivastava, PLD Deposited ZnO films on different substrates and oxygen pressure: a study of surface morphology and optical properties. Sci. Adv. Mater. 4(3-4), 467–474 (2012)

    Article  CAS  Google Scholar 

  98. B.L. Zhu, X.Z. Zhao, S. Xu, F.H. Su, G.H. Li, X.G. Wu, J. Wu, R. Wu, J. Liu, Oxygen pressure dependences of structure and properties of ZnO films deposited on amorphous glass substrates by pulsed laser deposition. Jpn. J. Appl. Phys. 47(4R), 2225–2229 (2008)

    Article  CAS  Google Scholar 

  99. S.-Y. Kim, J.H. Lee, J.J. Kim, Y.W. Heo, Effects of temperature, target/substrate distance, and background pressure on growth of ZnO nanorods by pulsed laser deposition. J. Nanosci. Nanotechnol. 14(12), 9020–9024 (2014)

    Article  CAS  Google Scholar 

  100. X.Q. Wei, et al, A comparative study of structural and optical properties of ZnO thin film prepared on sapphire substrate by PLD and annealed. in advanced materials research. Trans Tech Publ. (2011)

  101. Z. Liu et al., Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties. Appl. Phys. Lett. 88(5), 053110 (2006)

    Article  CAS  Google Scholar 

  102. V. Gupta, P. Bhattacharya, Y.I. Yuzuk, K. Sreenivas, R.S. Katiyar, Optical phonon modes in ZnO nanorods on Si prepared by pulsed laser deposition. J. Cryst. Growth 287(1), 39–43 (2006)

    Article  CAS  Google Scholar 

  103. A. Shkurmanov, C. Sturm, J. Lenzner, G. Feuillet, F. Tendille, P. de Mierry, M. Grundmann, Selective growth of tilted ZnO nanoneedles and nanowires by PLD on patterned sapphire substrates. AIP Adv. 6(9), 095013 (2016)

    Article  CAS  Google Scholar 

  104. S. Angappane, N.S. John, G. Kulkarni, Pyramidal nanostructures of zinc oxide. J. Nanosci. Nanotechnol. 6(1), 101–104 (2006)

    Article  CAS  Google Scholar 

  105. P. Ganesan et al., ZnO nanowires by pulsed laser vaporization: synthesis and properties. J. Nanosci. Nanotechnol. 5(7), 1125–1129 (2005)

    Article  CAS  Google Scholar 

  106. M. Kawakami, A.B. Hartanto, Y. Nakata, T. Okada, Synthesis of ZnO nanorods by nanoparticle assisted pulsed-laser deposition. Jpn. J. Appl. Phys. 42(1A), L33–L35 (2003)

    Article  CAS  Google Scholar 

  107. Y. Zhang, R.E. Russo, S.S. Mao, Femtosecond laser assisted growth of ZnO nanowires. Appl. Phys. Lett. 87(13), 133115 (2005)

    Article  CAS  Google Scholar 

  108. M. Lorenz et al., Mg x Zn 1− x O (0⩽ x< 0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition. Appl. Phys. Lett. 86(14), 143113 (2005)

    Article  CAS  Google Scholar 

  109. M. Yan, H.T. Zhang, E.J. Widjaja, R.P.H. Chang, Self-assembly of well-aligned gallium-doped zinc oxide nanorods. J. Appl. Phys. 94(8), 5240–5246 (2003)

    Article  CAS  Google Scholar 

  110. V.E. Sandana et al., Growth of “moth-eye” ZnO nanostructures on Si (111), c-Al2O3, ZnO and steel substrates by pulsed laser deposition. Phys. Status Solidi C 10(10), 1317–1321 (2013)

    Article  CAS  Google Scholar 

  111. J. Zheng, H. Kwok, Low resistivity indium tin oxide films by pulsed laser deposition. Appl. Phys. Lett. 63(1), 1–3 (1993)

    Article  CAS  Google Scholar 

  112. H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 86(11), 6451–6461 (1999)

    Article  CAS  Google Scholar 

  113. M. Hiramatsu, K. Imaeda, N. Horio, M. Nawata, Transparent conducting ZnO thin films prepared by XeCl excimer laser ablation. J. Vac. Sci. Technol. A 16(2), 669–673 (1998)

    Article  CAS  Google Scholar 

  114. E. Holmelund, B. Thestrup, J. Schou, N.B. Larsen, M.M. Nielsen, E. Johnson, S. Tougaard, Deposition and characterization of ITO films produced by laser ablation at 355ánm. Appl. Phys. A Mater. Sci. Process. 74(2), 147–152 (2002)

    Article  CAS  Google Scholar 

  115. C. Coutal, A. Azema, J.-C. Roustan, Fabrication and characterization of ITO thin films deposited by excimer laser evaporation. Thin Solid Films 288(1-2), 248–253 (1996)

    Article  CAS  Google Scholar 

  116. K.S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  117. X. Li et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932), 1312–1314 (2009)

    Article  CAS  Google Scholar 

  118. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9(8), 3087–3087 (2009)

    Article  CAS  Google Scholar 

  119. R. Lv, Q. Li, A.R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A.L. Elías, R. Cruz-Silva, H.R. Gutiérrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.C. Charlier, M. Pan, M. Terrones, Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci. Rep. 2, 586 (2012)

    Article  CAS  Google Scholar 

  120. Z. Luo, Y. Lu, D.W. Singer, M.E. Berck, L.A. Somers, B.R. Goldsmith, A.T.C. Johnson, Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure. Chem. Mater. 23(6), 1441–1447 (2011)

    Article  CAS  Google Scholar 

  121. W.K. Kim, Y.M. Jung, J.H. Cho, J.Y. Kang, J.Y. Oh, H. Kang, H.J. Lee, J.H. Kim, S. Lee, H.J. Shin, J.Y. Choi, S.Y. Lee, Y.C. Kim, I.T. Han, J.M. Kim, J.G. Yook, S. Baik, S.C. Jun, Radio-frequency characteristics of graphene oxide. Appl. Phys. Lett. 97(19), 193103 (2010)

    Article  CAS  Google Scholar 

  122. L.S.M. Perdigão et al., Graphene formation by decomposition of C60. J. Phys. Chem. C 115(15), 7472–7476 (2011)

    Article  CAS  Google Scholar 

  123. K. Wang, Laser based fabrication of graphene, in Advances in Graphene Science. IntechOpen (2013)

  124. S. Sarath Kumar et al., In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition. Appl. Phys. Lett. 103(19), 192109 (2013)

    Article  CAS  Google Scholar 

  125. I. Kumar, A. Khare, Multi-and few-layer graphene on insulating substrate via pulsed laser deposition technique. Appl. Surf. Sci. 317, 1004–1009 (2014)

    Article  CAS  Google Scholar 

  126. A.T. Koh, Y.M. Foong, D.H. Chua, Comparison of the mechanism of low defect few-layer graphene fabricated on different metals by pulsed laser deposition. Diam. Relat. Mater. 25, 98–102 (2012)

    Article  CAS  Google Scholar 

  127. B.J. Na, T.H. Kim, C. Lee, S.H. Lee, Study on graphene thin films grown on single crystal sapphire substrates without a catalytic metal using pulsed laser deposition. Trans. Electr. Electron. Mater. 16, 70–73 (2015)

    Article  Google Scholar 

  128. C.R. Serrao, A.M. Diamond, S.L. Hsu, L. You, S. Gadgil, J. Clarkson, C. Carraro, R. Maboudian, C. Hu, S. Salahuddin, Highly crystalline MoS2 thin films grown by pulsed laser deposition. Appl. Phys. Lett. 106(5), 052101 (2015)

    Article  CAS  Google Scholar 

  129. M.I. Serna, S.H. Yoo, S. Moreno, Y. Xi, J.P. Oviedo, H. Choi, H.N. Alshareef, M.J. Kim, M. Minary-Jolandan, M.A. Quevedo-Lopez, Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control. ACS Nano 10(6), 6054–6061 (2016)

    Article  CAS  Google Scholar 

  130. Y.T. Ho et al., Layered MoS2 grown on c-sapphire by pulsed laser deposition. physica status solidi. Rapid Res. Lett. 9(3), 187–191 (2015)

    CAS  Google Scholar 

  131. A. Barvat, N. Prakash, B. Satpati, S.S. Singha, G. Kumar, D.K. Singh, A. Dogra, S.P. Khanna, A. Singha, P. Pal, Emerging photoluminescence from bilayer large-area 2D MoS2 films grown by pulsed laser deposition on different substrates. J. Appl. Phys. 122(1), 015304 (2017)

    Article  CAS  Google Scholar 

  132. T.A. Loh, D.H. Chua, Origin of hybrid 1T-and 2H-WS2 ultrathin layers by pulsed laser deposition. J. Phys. Chem. C 119(49), 27496–27504 (2015)

    Article  CAS  Google Scholar 

  133. T.A. Loh, D.H. Chua, Growth mechanism of pulsed laser fabricated few-layer MoS2 on metal substrates. ACS Appl. Mater. Interfaces 6(18), 15966–15971 (2014)

    Article  CAS  Google Scholar 

  134. A. Goswami, P. Dhandaria, S. Pal, R. McGee, F. Khan, Ž. Antić, R. Gaikwad, K. Prashanthi, T. Thundat, Effect of interface on mid-infrared photothermal response of MoS 2 thin film grown by pulsed laser deposition. Nano Res. 10(10), 3571–3584 (2017)

    Article  CAS  Google Scholar 

  135. S. Prasad, J. Zabinski, V. Dyhouse, Pulsed-laser deposition of tungsten disulphide films on aluminium metal-matrix composite substrates. J. Mater. Sci. Lett. 11(19), 1282–1284 (1992)

    Article  CAS  Google Scholar 

  136. S. Alfihed, M. Hossain, A. Alharbi, A. Alyamani, F.H. Alharbi, PLD grown polycrystalline tungsten disulphide (WS 2) films. J. Mater. 2013, 15 (2013)

    CAS  Google Scholar 

  137. K. Tian, K. Baskaran, A. Tiwari, Growth of two-dimensional WS2 thin films by pulsed laser deposition technique. Thin Solid Films 668, 69–73 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thanks all the publishers and the authors who permitted to salvage some figures from their published work. We would like to especially acknowledge the help of Dr. H.K. Singh and Dr. P.K. Siwach, National Physical Laboratory, New Delhi, India, for fruitful discussions, and CSIR, DST for financial support Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, K.B., Kumar, P., Malik, M.A. et al. A comprehensive tutorial on the pulsed laser deposition technique and developments in the fabrication of low dimensional systems and nanostructures. emergent mater. 4, 737–754 (2021). https://doi.org/10.1007/s42247-020-00155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00155-5

Keywords

Navigation