Skip to main content
Log in

Advancements in efficient Terahertz generation techniques for diverse applications in spectroscopic studies

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The utilization of Terahertz (THz) radiation has garnered considerable interest in recent times owing to its wide-ranging applications in varied domains such as communication, imaging, and spectroscopy. This work specifically examines the production of THz radiation by utilizing Sinh-Gaussian laser pulses. The Sinh-Gaussian pulse has a distinct profile that has shown potential attributes for energy effective THz synthesis. In the present study, two Sinh-Gaussian pulses are considered to propagate through a uniform underdense homogenous collisional plasma. Nonlinearity produced by two pulses generates a nonlinear current density which further generates the THz waves. The effect of decentred parameter and collisional frequency on THz efficiency are analytically investigated in this study. Our study reveals that with the increase in decentred parameter or decrease in collisional frequency, energy efficiency of generated THz can be enhanced. The distinctive attributes of this pulse shape present new opportunities for optimizing THz sources, hence facilitating progress in ultrafast optics and terahertz technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. C. Sirtori, Bridge for the terahertz gap. Nature 417(6885), 132–133 (2002)

    Article  ADS  Google Scholar 

  2. A.M. Latha, S. Unnikrishnakurup, A. Jain, M.K. Pathra, K. Balasubramaniam, Material Characterization and Thickness Measurement of Iron Particle Reinforced Polyurethane Multi-layer Coating for Aircraft Stealth Applications Using THz-Time Domain Spectroscopy. J Infrared Millim Terahertz Waves 43(7–8), 582–597 (2022)

    Article  Google Scholar 

  3. M.R. Nowak et al., Recognition of Pharmacological Bi-Heterocyclic Compounds by Using Terahertz Time Domain Spectroscopy and Chemometrics. Sensors 19(15), 3349 (2019)

    Article  ADS  Google Scholar 

  4. F.S. Vieira, C. Pasquini, Determination of Cellulose Crystallinity by Terahertz-Time Domain Spectroscopy. Anal. Chem. 86(8), 3780–3786 (2014)

    Article  Google Scholar 

  5. S. Song, H. Kim, C. Kang, J. Bae, Terahertz Optical Properties and Carrier Behaviors of Graphene Oxide Quantum Dot and Reduced Graphene Oxide Quantum Dot via Terahertz Time-Domain Spectroscopy. Nanomaterials 13(13), 1948 (2023)

    Article  Google Scholar 

  6. A. Rawson, C.K. Sunil, Recent advances in terahertz time-domain spectroscopy and imaging techniques for automation in agriculture and food sector. Food. Anal. Methods. 15(2), 498–526 (2022)

    Article  Google Scholar 

  7. H. Ketelsen, R. Mästle, L. Liebermeister, R. Kohlhaas, B. Globisch, THz Time-Domain Ellipsometer for Material Characterization and Paint Quality Control with More Than 5 THz Bandwidth. Appl. Sci. 12(8), 3744 (2022)

    Article  Google Scholar 

  8. S.R. Konda, Y. Lin, R.A. Rajan, W. Yu, W. Li, Measurement of Optical Properties of CH3NH3PbX3 (X = Br, I) Single Crystals Using Terahertz Time-Domain Spectroscopy. Materials 16(2), 610 (2023)

    Article  ADS  Google Scholar 

  9. L. Chen, D. Liao, X. Guo, J. Zhao, Y. Zhu, S. Zhuang, Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review. Front. Inf. Technol. Electron. Eng. 20(5), 591–607 (2019)

    Article  Google Scholar 

  10. D. Liu, T. Lu, F. Qi, A Reliable Method for Removing Fabry-Perot Effect in Material Characterization With Terahertz Time-Domain Spectroscopy. IEEE Trans. Terahertz Sci. Technol. 10(5), 443–452 (2020)

    Article  ADS  Google Scholar 

  11. J. Qin, L. Xie, Y. Ying, Feasibility of Terahertz Time-Domain Spectroscopy to Detect Tetracyclines Hydrochloride in Infant Milk Powder. Anal. Chem. 86(23), 11750–11757 (2014)

    Article  Google Scholar 

  12. R. Rungsawang, Y. Ueno, I. Tomita, K. Ajito, Angle-dependent terahertz time-domain spectroscopy of amino acid single crystals. J. Phys. Chem. B 110(42), 21259–21263 (2006)

    Article  Google Scholar 

  13. P. Bawuah, J.A. Zeitler, Advances in terahertz time-domain spectroscopy of pharmaceutical solids: A review. TrAC, Trends Anal. Chem. 139, 116272 (2021)

    Article  Google Scholar 

  14. S. Huang, H. Deng, X. Wei, J. Zhang, Progress in application of terahertz time-domain spectroscopy for pharmaceutical analyses. Front. Bioeng. Biotechnol. 11 (2023). https://doi.org/10.3389/fbioe.2023.1219042

  15. Q. Wang, L. Xie, Y. Ying, Overview of imaging methods based on terahertz time-domain spectroscopy. Appl. Spectrosc. Rev. 57(3), 249–264 (2022)

    Article  ADS  Google Scholar 

  16. S. Sommer, M. Koch, A. Adams, Terahertz Time-Domain Spectroscopy of Plasticized Poly (vinyl chloride). Anal. Chem. 90(4), 2409–2413 (2018)

    Article  Google Scholar 

  17. M. Koch, D.M. Mittleman, J. Ornik, E. Castro-Camus, Terahertz time-domain spectroscopy. Nat. Rev. Methods Primers 3(1), 48 (2023)

    Article  Google Scholar 

  18. D.S. Sitnikov et al., Effects of high intensity non-ionizing terahertz radiation on human skin fibroblasts. Biomed. Opt. Express 12(11), 7122 (2021)

    Article  Google Scholar 

  19. I. Amenabar, F. Lopez, A. Mendikute, In Introductory Review to THz Non-Destructive Testing of Composite Mater. J Infrared Millim Terahertz Waves 34(2), 152–169 (2013)

    Article  Google Scholar 

  20. K. Berdel, J.G. Rivas, P.H. Bolivar, P. de Maagt, H. Kurz, Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies. IEEE Trans. Microw. Theory Tech. 53(4), 1266–1271 (2005)

    Article  ADS  Google Scholar 

  21. M.N. Hamza, M.T. Islam, Designing an Extremely Tiny Dual-Band Biosensor Based on MTMs in the Terahertz Region as a Perfect Absorber for Non-Melanoma Skin Cancer Diagnostics. IEEE Access 11, 136770–136781 (2023)

    Article  Google Scholar 

  22. D. Crawley, C. Longbottom, V.P. Wallace, B. Cole, D. Arnone, M. Pepper, Three-dimensional terahertz pulse imaging of dental tissue. J. Biomed. Opt. 8(2), 303 (2003)

    Article  ADS  Google Scholar 

  23. W. R. Tribe, D. A. Newnham, P. F. Taday, and M. C. Kemp, Hidden object detection: security applications of terahertz technology, R. J. Hwu, Ed., 5354 (2004)

  24. K. Huang, Z. Wang, Terahertz Terabit Wireless Communication. IEEE Microw. Mag. 12(4), 108–116 (2011)

    Article  Google Scholar 

  25. G.A. Komandin et al., Quantification of solid-phase chemical reactions using the temperature-dependent terahertz pulsed spectroscopy, sum rule, and Arrhenius theory: thermal decomposition of α-lactose monohydrate. Opt. Express 30(6), 9208 (2022)

    Article  ADS  Google Scholar 

  26. R. Scapaticci et al., Broadband Electromagnetic Sensing for Food Quality Control: A Preliminary Experimental Study, in 2021 15th European Conference on Antennas and Propagation (EuCAP), IEEE, pp. 1–5 (2021). https://doi.org/10.23919/EuCAP51087.2021.9411022

  27. Y. Xia, W. Liu, Y. Shi, S. Younas, C. Liu, L. Zheng, Rapid determination of capsaicin concentration in soybean oil by terahertz spectroscopy. J. Food Sci. 87(2), 567–575 (2022)

    Article  Google Scholar 

  28. P. Loahavilai et al., Chemometric Analysis of a Ternary Mixture of Caffeine, Quinic Acid, and Nicotinic Acid by Terahertz Spectroscopy. ACS Omega 7(40), 35783–35791 (2022)

    Article  Google Scholar 

  29. R. Sengupta, H. Khand, G. Sarusi, Terahertz Impedance Spectroscopy of Biological Nanoparticles by a Resonant Metamaterial Chip for Breathalyzer-Based COVID-19 Prompt Tests. ACS Appl. Nano Mater. 5(4), 5803–5812 (2022)

    Article  Google Scholar 

  30. L. Chen et al., Terahertz Signatures of Hydrate Formation in Alkali Halide Solutions. J. Phys. Chem. Lett. 11(17), 7146–7152 (2020)

    Article  Google Scholar 

  31. K. Ajito, Y. Ueno, J.-Y. Kim, T. Sumikama, Capturing the Freeze-Drying Dynamics of NaCl Nanoparticles Using THz Spectroscopy. J. Am. Chem. Soc. 140(42), 13793–13797 (2018)

    Article  Google Scholar 

  32. M.M. Matoug, R. Gordon, Crude Oil Asphaltenes Studied by Terahertz Spectroscopy. ACS Omega 3(3), 3406–3412 (2018)

    Article  Google Scholar 

  33. S. Mou, A. Rubano, D. Paparo, Broadband Terahertz Spectroscopy of Imidazolium-Based Ionic Liquids. J. Phys. Chem. B 122(12), 3133–3140 (2018)

    Article  Google Scholar 

  34. M. Takahashi, N. Okamura, X. Fan, H. Shirakawa, H. Minamide, Temperature Dependence in the Terahertz Spectrum of Nicotinamide: Anharmonicity and Hydrogen-Bonded Network. J. Phys. Chem. A 121(13), 2558–2564 (2017)

    Article  Google Scholar 

  35. V. Sharma, S. Kumar, N. Kant, V. Thakur, Effect of wiggler magnetic field on wakefield excitation and electron energy gain in laser wakefield acceleration. Z. Naturforsch. A 79(3), 199–205 (2023)

    Article  Google Scholar 

  36. V. Sharma, N. Kant, V. Thakur, Electron acceleration in collisionless plasma: comparative analysis of laser wakefield acceleration using Gaussian and cosh-squared-Gaussian laser pulses. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01564-5

  37. V. Sharma V. Thakur, Analyzing electron acceleration mechanisms in magnetized plasma using Sinh–Gaussian pulse excitation. J. Opt. (2024). https://doi.org/10.1007/s12596-024-01709-0

  38. V. Sharma V. Thakur, A comprehensive study of magnetic field-induced modifications in sin-Gaussian pulse-driven laser wakefield acceleration. J. Opt. (2024). https://doi.org/10.1007/s12596-023-01636-6

  39. V. Sharma, N. Kant, V. Thakur, Magnetic field effects in laser wakefield excitation: a study using Hermite–Gaussian laser pulses in homogeneous plasma. J. Opt. (2024). https://doi.org/10.1007/s12596-024-01689-1

  40. V. Sharma, N. Kant, V. Thakur, Laser Wakefield Effect: A Comparative Study of Gaussian and Sinh-Gaussian Pulse Characteristics. Braz. J. Phys. 54(3), 68 (2024)

    Article  Google Scholar 

  41. V. Sharma, N. Kant, V. Thakur, Optimizing laser-driven electron acceleration with sinh-squared Gaussian pulses, J. Opt. (2024).https://doi.org/10.1007/s12596-023-01649-1

  42. V. Sharma, N. Kant, V. Thakur, Exploring sin-Gaussian laser pulses for efficient electron acceleration in plasma. Opt Quantum Electron 56(4), 601 (2024)

    Article  Google Scholar 

  43. H. K. Midha, V. Sharma, N. Kant, V. Thakur, Resonant Terahertz radiation by p-polarised chirped laser in hot plasma with slanting density modulation. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01563-6

  44. M. Singh, R.P. Sharma, Generation of THz radiation by laser plasma interaction. Contrib. Plasma Phys. 53(7), 540–548 (2013)

    Article  ADS  Google Scholar 

  45. H. K. Midha, V. Sharma, N. Kant, V. Thakur, Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J Opt. (2023). https://doi.org/10.1007/s12596-023-01413-5

  46. S. Kumar, S. Vij, N. Kant, V. Thakur, Combined effect of transverse electric and magnetic fields on THz generation by beating of two amplitude-modulated laser beams in the collisional plasma. J. Astrophys. Astron. 43(1), 30 (2022)

    Article  ADS  Google Scholar 

  47. S. Kumar, S. Vij, N. Kant, V. Thakur, Interaction of obliquely incident lasers with anharmonic CNTs acting as dipole antenna to generate resonant THz radiation, Waves Random Complex Media 1–13 (2022). https://doi.org/10.1080/17455030.2022.2155330

  48. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant Terahertz Generation by the Interaction of Laser Beams with Magnetized Anharmonic Carbon Nanotube Array. Plasmonics 17(1), 381–388 (2022)

    Article  Google Scholar 

  49. S. Kumar, N. Kant, V. Thakur, THz generation by self-focused Gaussian laser beam in the array of anharmonic VA-CNTs. Opt. Quantum Electron. 55(3), 281 (2023)

    Article  Google Scholar 

  50. S. Kumar, S. Vij, N. Kant, V. Thakur, Resonant terahertz generation by cross-focusing of Gaussian laser beams in the array of vertically aligned anharmonic and magnetized CNTs. Opt. Commun. 513, 128112 (2022)

    Article  Google Scholar 

  51. H. K. Midha, V. Sharma, N. Kant, V. Thakur, Optimizing terahertz emission with Hermite–Gaussian laser beams in collisional slanted up density plasma. J Opt. (2024). https://doi.org/10.1007/s12596-024-01696-2

  52. S. Chaudhary, K.P. Singh, U. Verma, A.K. Malik, Radially polarized terahertz (THz) generation by frequency difference of Hermite Cosh Gaussian lasers in hot electron-collisional plasma. Opt Lasers Eng 134, 106257 (2020)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Jasveer Singh: derivation, methodology, analytical modelling, Hitesh Kumar Midha: graph plotting, numerical analysis and result discussion; Sunita Rani: result and discussion, supervision, reviewing, Vivek Sharma: Numerical analysis, and Analytical modelling, Vishal Thakur: supervision, reviewing, and editing.

Corresponding author

Correspondence to Vishal Thakur.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Midha, H.K., Rani, S. et al. Advancements in efficient Terahertz generation techniques for diverse applications in spectroscopic studies. J Opt (2024). https://doi.org/10.1007/s12596-024-01822-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01822-0

Keywords

Navigation