Skip to main content
Log in

Electric field-induced strong THz emission by beating two filamented spatial-Gaussian lasers in the pre-existing underdense magnetized plasma

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A novel scheme for electric field-induced strong terahertz (THz) emission by beating two filamented spatial-Gaussian laser beams (with intensities \({10}^{14} {\mathrm{W cm}}^{-2})\) in the pre-existing underdense magnetized plasma is proposed. The coupling between the nonlinear density and nonlinear velocity of the plasma electrons results in the strong nonlinear current which drives the efficient THz radiation in the presence of the D.C. electric and magnetic fields. The contribution of the electron temperature on the THz generation has been investigated. The modulation index also makes a significant contribution to the enhancement of the nonlinear current density and normalized THz amplitude. With the help of a magnetic field, D. C. electric field, D.C. drift speed, and modulation index, one can easily tune the THz radiations for medical and astronomical applications. The normalized amplitude of emitted THz radiation is observed to vary with the externally applied electric field, magnetic field, normalized frequency, drift velocity of electrons, thermal velocity of electrons, temperature of plasma electrons, and modulation index of incident laser beams. The frequency of the emitted THz radiation (corresponding to \(25.0\mathrm{ kG}\)) is found to lie in the frequency range of molecular rotational and vibrational spectra of deoxyribonucleic acid. As a result, emitted THz radiation in the present scheme can play an important role in developing a new technique to distinguish between healthier and non-healthier tissues of human beings. The emitted THz radiation shows sensitive behavior toward water particles. Due to this, emitted THz radiation can also be used to detect water at the surface of the earth as well as on other celestial bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. A.R. Orlando, G.P. Gallerano, J. Infrared Millim. Terahertz Waves 30, 1308 (2009). https://doi.org/10.1007/s10762-009-9561-z

    Article  Google Scholar 

  2. V. Thakur, S. Vij, N. Kant, S. Kumar, Indian J Phys 97, 2191–2196 (2023). https://doi.org/10.1007/s12648-022-02575-x

    Article  ADS  Google Scholar 

  3. P.H. Siegel, IEEE Trans. Microw. Theory Tech. 50, 910 (2002). https://doi.org/10.1109/22.989974

    Article  ADS  Google Scholar 

  4. K. Ishigaki, M. Shiraishi, S. Suzuki, M. Asada, N. Nishiyama, S. Arai, Electron. Lett. 8, 582 (2012). https://doi.org/10.1049/el.2012.0849

    Article  ADS  Google Scholar 

  5. E. Pickwell, V.P. Wallace, J. Phys. D: Appl. Phys. 39, R301 (2006). https://doi.org/10.1088/0022-3727/39/17/R01

    Article  ADS  Google Scholar 

  6. M. Kawase, Food Sci. Technol. Res. 18, 601 (2012). https://doi.org/10.3136/fstr.18.601

    Article  Google Scholar 

  7. N.C. Hoffmann, J. Fulop, Phys. D: Appl. Phys. 44, 083001 (2011)

    Article  ADS  Google Scholar 

  8. P.H. Lui, F.A. Hegmann, Appl. Phys. Lett 78, 3478 (2001). https://doi.org/10.1063/1.1375841

    Article  ADS  Google Scholar 

  9. D. Dragoman, M. Dragoman, Prog Quant. Electron 28, 1–66 (2004). https://doi.org/10.1364/AO.43.003848

    Article  ADS  Google Scholar 

  10. F. Sizov, Opto-Electr. Rev. 18, 009–0029 (2010). https://doi.org/10.2478/s11772-009-0029-4

    Article  ADS  Google Scholar 

  11. R.K. Singh, S. Kumar, R.P. Sharma, Contrib. Plasma Phys. 57, 252–257 (2017). https://doi.org/10.1002/ctpp.201700029

    Article  ADS  Google Scholar 

  12. S. Kumar, S. Vij, N. Kant, V. Thakur, Plasmonics 17, 381–388 (2022). https://doi.org/10.1007/s11468-021-01529-z

    Article  Google Scholar 

  13. S. Kumar, S. Vij, N. Kant, V. Thakur, Chin. J. Phys. 78, 453–462 (2022). https://doi.org/10.1016/j.cjph.2022.06.004

    Article  Google Scholar 

  14. S. Kumar, S. Vij, N. Kant, V. Thakur, Phys. Scr. 98, 015015 (2022)

    Article  ADS  Google Scholar 

  15. S. Kumar, S. Vij, N. Kant, V. Thakur, Waves Rand. Complex Media (2022). https://doi.org/10.1080/17455030.2022.2155330

    Article  Google Scholar 

  16. S. Kumar, S. Vij, N. Kant, V. Thakur, Braz. J. Phys. 53, 37 (2023). https://doi.org/10.1007/s13538-022-01252-y

    Article  ADS  Google Scholar 

  17. S. Kumar, N. Kant, V. Thakur, Opt. Quant. Electron 55, 281 (2023). https://doi.org/10.1007/s11082-023-04562-w

    Article  Google Scholar 

  18. S. Kumar, S. Vij, N. Kant, V. Thakur, Opt. Commun. 513, 128112 (2022)

    Article  Google Scholar 

  19. M. Amouamouha, F. Bakhtiari, B. Ghafary, AIP Adv. 11, 125219 (2021)

    Article  ADS  Google Scholar 

  20. M. Kumar, V.K. Tripathi, IEEE J Quant. Elect. 48, 1031–1035 (2012). https://doi.org/10.1109/JQE.2012.2192471

    Article  ADS  Google Scholar 

  21. M.C. Gurjar, K. Gopal, D.N. Gupta, V.V. Kulagin, H. Suk, IEEE Trans. Plasma Sci. 48, 3727–3734 (2020). https://doi.org/10.1109/TPS.2020.3022903

    Article  ADS  Google Scholar 

  22. D.N. Gupta, V.V. Kulagin, H. Suk, Opt. Commun. 401, 71–74 (2017). https://doi.org/10.1016/j.optcom.2017.05.043

    Article  ADS  Google Scholar 

  23. A. Kumar, A. Kumar, A. Verma, Laser Phys. 31, 106001 (2021)

    Article  ADS  Google Scholar 

  24. A. Kumar, S.P. Mishra, A. Kumar, A. Varma, Optik 273, 170436 (2023)

    Article  ADS  Google Scholar 

  25. A. Varma, A. Kumar, Optik 231, 166326 (2021)

    Article  ADS  Google Scholar 

  26. S. Kumar, S. Vij, N. Kant, A. Mehta, V. Thakur, Euro. Phys. J. Plus 136, 148 (2021). https://doi.org/10.1140/epjp/s13360-021-01089-5

    Article  Google Scholar 

  27. S. Kumar, S. Vij, N. Kant, V. Thakur, J. Astrophys. Astr. 43, 30 (2022). https://doi.org/10.1007/s12036-022-09805-y

    Article  ADS  Google Scholar 

  28. T.J. Wang, J.F. Daigle, S. Yuan, F. Théberge, M. Châteauneuf, J. Dubois, G. Roy, H. Zeng, S.L. Chin, Phys. Rev. A 83, 053801 (2011)

    Article  ADS  Google Scholar 

  29. P. Varshney, V. Sajal, P. Chauhan, R. Kumar, K.N. Sharma, Laser Part. Beams 32, 375–381 (2014). https://doi.org/10.1017/S026303461400024X

    Article  ADS  Google Scholar 

  30. D. Tripathi, L. Bhasin, R. Uma, V.K. Tripathi, Phys. Scr. 82, 035504 (2010)

    Article  ADS  Google Scholar 

  31. S. Kumar, N. Kant, V. Thakur, Phys. Scr. 98, 085506 (2023)

    Article  ADS  Google Scholar 

  32. A. Braun, G. Korn, X.D. Liu, J. Squier, G. Mourou, Opt. Lett. 20, 73–75 (1995). https://doi.org/10.1364/OL.20.000073

    Article  ADS  Google Scholar 

  33. A. Houard, Y. Liu, B. Prade, V.T. Tikhonchuk, A. Mysyrowicz, Phys. Rev. Lett. 100, 255006 (2008)

    Article  ADS  Google Scholar 

  34. T. Löffler, F. Jacoband, H.G. Roskos, Appl. Phys. Lett. 77, 453 (2000). https://doi.org/10.1063/1.127007

    Article  ADS  Google Scholar 

  35. D.N. Gupta, A. Jain, Optik 227, 165824 (2021)

    Article  ADS  Google Scholar 

  36. A. Markelz, A. Roitberg, E. Heilwiel, Chem. Phys. Lett. 320, 42 (2000)

    Article  ADS  Google Scholar 

  37. D. Mittleman, M. Gupta, R. Neelamani et al., Appl. Phys. B 68, 1085–1094 (1999). https://doi.org/10.1007/s003400050750

    Article  ADS  Google Scholar 

  38. S.P. Mickan, X.C. Zhang, Terahertz Sens. Technol. (2003). https://doi.org/10.1142/9789812796820_0008

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SK contributed to derivation, methodology, analytical modeling, and graph plotting; NK contributed to numerical analysis and result discussion; and VT contributed to supervision, reviewing, and editing.

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kant, N. & Thakur, V. Electric field-induced strong THz emission by beating two filamented spatial-Gaussian lasers in the pre-existing underdense magnetized plasma. J Opt (2023). https://doi.org/10.1007/s12596-023-01334-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01334-3

Keywords

Navigation