Skip to main content

Advertisement

Log in

Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses

  • Review
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Cassava (Manihot esculenta Crantz) is one of the oldest root and tuber crops, used by humans to produce food, feed and beverages. Currently, cassava is produced in more than 100 countries and fulfils the daily caloric demands of millions of people living in tropical America, Africa, and Asia. Its importance as a food security crop is high in Western, Central and Eastern Africa due to its ability to produce reasonable yields (~10 t/ha) in poor soils and with minimal inputs. Traditionally a famine reserve and a subsistence crop, the status of cassava is now evolving fast as a cash crop and as raw material in the production of starch (and starch based products), energy (bio-ethanol) and livestock feed in the major producing countries. Cassava leaves, which are rich in protein and beta-carotenoids, are also used as a vegetable and forage (fresh or dehydrated meal) in various parts of the world. In recent years, some of the problems in the production of cassava have been increasing infection with cassava mosaic disease (CMD), cassava brown streak disease (CBSD) and cassava bacterial blight (CBB). Inherent post-harvest physiological disorder (PPD) and cyanogenic glycosides (CG) are some of the most prominent challenges for scientists, producers and consumers in the post-production systems. Collaborative research in participatory plant breeding is ongoing at leading international research institutes such as IITA and CIAT to improve crop resistance to virus diseases, reduce PPD and CG, and improve the overall nutritional characteristics. Further research should also focus on post-production systems by developing enhanced storage and transportation techniques, mechanisation (peeling, size reduction, drying and dewatering) and improved packaging. Moreover, a robust national policy, market development, and dissemination and extension program are required to realise the full potential of innovations and technologies in cassava production and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Achidi, A. U., Ajayi, O. A., Maziya-Dixon, B., & Bokanga, M. (2008). The effect of processing on the nutrient content of cassava (Manihot esculenta Crantz) leaves. Journal of Food Processing and Preservation, 32(3), 486–502.

    Article  CAS  Google Scholar 

  • Agbor-Egbe, T., & Lape Mbome, I. (2006). The effects of processing techniques in reducing cyanogen levels during the production of some Cameroonian cassava foods. Journal of Food Composition and Analysis, 19(4), 354–363. https://doi.org/10.1016/j.jfca.2005.02.004.

    Article  CAS  Google Scholar 

  • Alabi, O. J., Mulenga, R. M., & Legg, J. P. (2015). Cassava Mosaic. In G. Fermin & P. Tennant (Eds.), Virus diseases of tropical and subtropical crops (pp. 42–55). Wallingford: CABI, Wallingford, UK.

    Google Scholar 

  • Allem, A. (2002). The origins and taxonomy of cassava. In R. J. Hillocks, J. M. Thresh, & A. Bellotti (Eds.), Cassava : Biology, production, and utilization (pp. 1–17). Wallingford: CAB International Wallingford, UK.

    Google Scholar 

  • Allem, A. C. (1999). The closest wild relatives of cassava (Manihot Esculenta Crantz). Euphytica, 107, 123–133.

    Article  Google Scholar 

  • Balagopalan, C. (2002). Cassava utilization in food, feed and industry. In R. J. Hillocks, J. M. Thresh, & A. C. Bellotti (Eds.), Cassava biology, production and utilization (pp. 301–318). Wallingford: CAB International Wallingford, UK.

    Chapter  Google Scholar 

  • Bellotti, A. C. (2002). Arthropod pests. In R. J. Hillocks, J. M. Thresh, & A. Bellotti (Eds.), Cassava biology, production and utilization (pp. 209–230). Wallingford: CAB International Wallingford, UK.

    Chapter  Google Scholar 

  • Bellotti, A. C., Smith, L., & Lapointe, S. L. (1999). Recent advances in cassava pest management. Annual Review of Entomology, 44, 343–370.

    Article  CAS  PubMed  Google Scholar 

  • Bokanga, M. (1994). Processing of cassava leaves for human consumption. Acta Horticulturae, 375, 203–207.

    Article  CAS  Google Scholar 

  • Bokanga, M. (1999). Cassava: Post-harvest operations. In Information network on post- harvest operations (pp. 1–26). Rome: FAO.

    Google Scholar 

  • Bradbury, J. H., & Holloway, W. D. (1988). Chemistry of Tropical Root Crops: Significance for Nutrition and Agriculture in the Pacific. Canberra: Australian Centre for International Agricultural Research, monograph no. 6, Canberra, Australia.

  • Byju, G., Nedunchezhiyan, M., Hridya, A. C., & Soman, S. (2016). Site-specific nutrient Management for Cassava in southern India. Agronomy Journal, 108(2), 830–840.

    Article  CAS  Google Scholar 

  • Byju, G., Nedunchezhiyan, M., Ravindran, C. S., Mithra, V. S. S., Ravi, V., & Naskar, S. K. (2012). Modeling the response of cassava to fertilizers: A site-specific nutrient management approach for greater tuberous root yield. Communications in Soil Science and Plant Analysis, 43, 1149–1162.

    Article  CAS  Google Scholar 

  • CABI. (2016). Invasive species compendium. CAB International. http://www.cabi.org/isc/datasheet/17107. Accessed 1 Dec 2016.

  • Calvert, L. A., & Thresh, J. (2002). The viruses and virus diseases of cassava. In R. J. Hillocks, J. M. Thresh, & A. Bellotti (Eds.), Cassava : Biology, production, and utilization (pp. 237–260). Wallingford: CAB International Wallingford, UK.

    Chapter  Google Scholar 

  • Câmara, F. S., & Madruga, M. S. (2001). Cyanic acid, Phytic acid, total tannin and aflatoxin contents of a Brazilian (Natal) multimistura preparation. Revista de Nutrição, 14(1), 33–36. https://doi.org/10.1590/S1415-52732001000100005.

    Article  Google Scholar 

  • Campo, B. V. H., Hyman, G., & Bellotti, A. (2011). Threats to cassava production: Known and potential geographic distribution of four key biotic constraints. Food Security, 3(3), 329–345. https://doi.org/10.1007/s12571-011-0141-4.

    Article  Google Scholar 

  • Carter, S. E., Fresco, L. O., Jones, P. G., & Fairbairn, J. N. (1995). Introduction and diffusion of cassava in Africa. Ibadan: IITA (International Institute of Tropical Agriculture), Ibadan, Nigeria. https://www.researchgate.net/publication/40207427_Introduction_and_diffusion_of_cassava_in_Africa

  • Chipeta, M. M., Shanahan, P., Melis, R., Sibiya, J., & Benesi, I. R. M. (2016). Early storage root bulking index and agronomic traits associated with early bulking in cassava. Field Crops Research, 198, 171–178.

    Article  Google Scholar 

  • Cliff, J., Muquingue, H., Nhassico, D., Nzwalo, H., & Bradbury, J. H. (2011). Konzo and continuing cyanide intoxication from cassava in Mozambique. Food and Chemical Toxicology, 49(3), 631–635. https://doi.org/10.1016/j.fct.2010.06.056.

    Article  CAS  PubMed  Google Scholar 

  • Cock, J. H. (1973). Cyanide toxicity in relation to the cassava research program of CIAT in Colombia. In B. Nestel & R. MacIntyre (Eds.), Chronic cassava toxicity (pp. 37–40). Ottawa: International Development Research Centre, Ottawa, Canada.

    Google Scholar 

  • Cock, J. H. (1985). Cassava: New potential for a neglected crop. Colorado: Westview Press Inc..

    Google Scholar 

  • CodexAlimentarius. (2013). Proposed draft: Maximum levels for Hydrocyanic Acid in Cassava and Cassava Products. Joint FAO/WHO Food Standards Programme, Rome, Italy. ftp://ftp.fao.org/codex/meetings/cccf/cccf7/cf07_10e.pdf. Accessed 12 December 2016.

  • Coursey, D. G. (1973). Cassava as food: Toxicity and technology. In B. Nestle & R. MacIntyre (Eds.), Chronic cassava toxicity (pp. 27–36). Ottawa: International Development Research Centre.

    Google Scholar 

  • Denison, R. F. (2012). Darwinian agriculture: How understanding evolution can improve agriculture. Darwinian Agriculture: How Understanding Evolution Can Improve Agriculture. http://www.scopus.com/inward/record.url?eid=2-s2.0-84924338776&partnerID=tZOtx3y1%5Cn http://www.scopus.com/inward/record.url?eid=2-s2.0-84871790758&partnerID=tZOtx3y1

  • Dixon, A. G. O., Asiedu, R., & Bokanga, M. (1994). Breeding of cassava for low cyanogenic potential: Problems, progress and prospects. ISHS Acta Horticulturae, 375, 153–161. https://doi.org/10.17660/ActaHortic.1994.375.13.

    Article  CAS  Google Scholar 

  • Eggum, B. O. (1970). The protein quality of cassava leaves. British Journal of Nutrition, 24(3), 761–768. https://doi.org/10.1079/BJN19700078.

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy, M. A. (2007). Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Brazilian Journal of Plant Physiology, 19(4), 257–286. https://doi.org/10.1590/S1677-04202007000400003.

    Article  CAS  Google Scholar 

  • Ezui, K. S., Franke, A. C., Mando, A., Ahiabor, B. D. K., Tetteh, F. M., Sogbedji, J., et al. (2016). Fertiliser requirements for balanced nutrition of cassava across eight locations in West Africa. Field Crops Research, 185, 69–78. https://doi.org/10.1016/j.fcr.2015.10.005.

    Article  Google Scholar 

  • FAOSTAT. (2014). FAOSTAT. Food and Agricultural Organization of the United Nations. http://data.fao.org/ref/262b79ca-279c-4517-93de-ee3b7c7cb553.html?version=1.0

  • Golob, P., Farrell, G., & Orchard, J. (2002). Crop Post-Harvest: Science and Technology. (volume 1.). Oxford: Blackwell publication company, UK.

  • Harvestplus. (2016). Biofortified Staple Food Crops: Who Is Growing What? file:///C:/Users/Aditya/Downloads/HarvestPlus_BiofortifiedCropMap_2016.pdf. Accessed 15 Nov 2016.

  • Hillocks, R. J., & Wydra, K. (2002). Bacterial, fungal and nematode diseases. In R. J. Hillocks, J. M. Thresh, & A. Bellotti (Eds.), Cassava : Biology, production, and utilization (pp. 260–279). Wallingford: CAB International Wallingford, UK.

    Chapter  Google Scholar 

  • Howeler, R., Lutaladio, N., & Thomson, G. (2013). Save and grow: Cassava. A guide for sustainable production and intensification. Rome: Food and Agriculture Organization Of The United Nations.

    Google Scholar 

  • Howlett, W. P., Brubaker, G. R., Mlingi, N., & Rosling, H. (1990). Konzo, an epidemic upper motor neuron disease studied in tanzania. Brain, 113(1), 223–235. https://doi.org/10.1093/brain/113.1.223.

    Article  PubMed  Google Scholar 

  • Jarvis, A., Ramirez-Villegas, J., Campo, B. V. H., & Navarro-Racines, C. (2012). Is cassava the answer to African climate change adaptation? Tropical Plant Biology, 5(1), 9–29. https://doi.org/10.1007/s12042-012-9096-7.

    Article  Google Scholar 

  • Jones, W. O. (1959). Manioc in Africa. Stanford: Stanford University Press, California.

    Google Scholar 

  • Kleih, U., Phillips, D., Wordey, M. T., & Komlaga, G. (2013). Cassava market and value chain analysis: Ghana case study. Natural Resources Institute, University of Greenwich, UK. https://agriknowledge.org/downloads/cn69m4217. Accessed 10 December 2016.

  • Knoth, J. (1993). Traditional storage of yams and cassava and its improvement. Eschborn: Deutsche Gesellschaft fuer Technische Zusammenarbeit GmbH.

    Google Scholar 

  • Lancaster, P. A., & Brooks, J. E. (1983). Cassava leaves as human food. Economic Botany, 37(3), 331–348. https://doi.org/10.1007/BF02858890.

    Article  Google Scholar 

  • Latif, S., & Müller, J. (2015). Potential of cassava leaves in human nutrition: A review. Trends in Food Science & Technology, 44(2), 147–158. https://doi.org/10.1016/j.tifs.2015.04.006.

    Article  CAS  Google Scholar 

  • Lebot, V. (2009). Tropical root and tuber crops: Cassava, sweet potato, yams and aroids. Crop Production Science in Horticulture No. 17, CABI Publishing, Oxfordshire, UK. https://doi.org/10.1017/S0014479709007832.

  • Legg, J. P., & Fauquet, C. M. (2004). Cassava mosaic geminiviruses in Africa. Plant Molecular Biology, 56(4), 585–599. https://doi.org/10.1007/s11103-004-1651-7.

    Article  CAS  PubMed  Google Scholar 

  • Legg, J. P., Kumar, P. L., Kanju, E. E., Tennant, P., & Fermin, G. (2015). Cassava brown streak. In G. Fermin & P. Tennant (Eds.), Virus diseases of tropical and subtropical crops (pp. 42–55). Wallingford: CABI, Wallingford, UK.

    Chapter  Google Scholar 

  • Leihner, D. (2002). Agronomy and cropping systems. In R. J. Hillocks, J. M. Thresh, & A. Bellotti (Eds.), Cassava biology, production and utilization (pp. 91–113). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Lozano, J. C. (1986). Cassava Bacterial Blight: A Manageable Disease. Plant Disease. https://doi.org/10.1094/PD-70-1089.

  • Lozano, J. C., Bellotti, A., Schoonhoven, A. van, Howeler, R., Doll, J., Howell, D., & Bates, T. (1976). Field problems in cassava. Field problems in cassava. Cali, Colombia: CIAT (International Center for Tropical Agriculture).

  • Madhusudanan, M., Menon, M. K., Ummer, K., & Radhakrishnanan, K. (2008). Clinical and etiological profile of tropical ataxic neuropathy in Kerala, South India. European Neurology, 60(1), 21–26. https://doi.org/10.1159/000127975.

    Article  PubMed  Google Scholar 

  • Maraite, H. (1993). Xanthomonas campestris pathovars on cassava: Cause of bacterial blight and bacterial necrosis. In J. G. Swings & E. L. Civerolo (Eds.), Xanthomonas (pp. 18–25). London: Chapman and Hall.

    Google Scholar 

  • Maruthi, M. N., Hillocks, R. J., Mtunda, K., Raya, M. D., Muhanna, M., Kiozia, H., et al. (2005). Transmission of cassava brown streak virus by Bemisia Tabaci (Gennadius). Journal of Phytopathology, 153(5), 307–312. https://doi.org/10.1111/j.1439-0434.2005.00974.x.

    Article  Google Scholar 

  • Montagnac, J. A., Davis, C. R., & Tanumihardjo, S. A. (2009). Processing techniques to reduce toxicity and antinutrients of cassava for use as a staple food. Comprehensive Reviews in Food Science and Food Safety, 8(1), 17–27. https://doi.org/10.1111/j.1541-4337.2008.00064.x.

    Article  CAS  Google Scholar 

  • Montgomery, R. D. (1969). Cyanogens. In I. E. Liener (Ed.), Toxic constituents of plant foodstuffs (pp. 143–160). New York: Academic Press.

    Chapter  Google Scholar 

  • Muyinza, H., Nyakaisiki, E., Matovu, M., Nuwamanya, F., Wanda, K., Abass, A., & Naziri, D. (2015). Effectiveness of cassava stem pruning for inducing delay in postharvest physiological deterioration (PPD) of fresh roots. Uganda. www.rtb.cgiar.org/wp-content/uploads/2015/08/RPS/5/5.pptx

    Google Scholar 

  • Nambisan, B. (1994). Evaluation of the effect of various processing techniques on cyanogen content reduction in cassava. Acta Horticulturae, 375, 193–201.

    Article  CAS  Google Scholar 

  • Nassar, N. M. A., Fernandes, P. C., Melani, R. D., & Pires, O. R. (2009). Amarelinha do Amapá: A carotenoid-rich cassava cultivar. Genetics and Molecular Research, 8(3), 1051–1055. https://doi.org/10.4238/vol8-3gmr625.

    Article  CAS  PubMed  Google Scholar 

  • Naziri, D., Quaye, W., Siwoku, B., Wanlapatit, S., Viet Phu, T., & Bennett, B. (2014). The diversity of postharvest losses in cassava value chains in selected developing countries. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 115(2), 111–123.

    Google Scholar 

  • Nduwumuremyi, A., Melis, R., Shanahan, P., & Asiimwe, T. (2016). Participatory appraisal of preferred traits, production constraints and postharvest challenges for cassava farmers in Rwanda. Food Security, 8(2), 375–388. https://doi.org/10.1007/s12571-016-0556-z.

    Article  Google Scholar 

  • Ngudi, D. D., Kuo, Y. H., & Lambein, F. (2003). Amino acid profiles and protein quality of cooked cassava leaves or “saka-saka.” Journal of the Science of Food and Agriculture, 83(6), 529–534. https://doi.org/10.1002/jsfa.1373.

  • Nhassico, D., Muquingue, H., Cliff, J., Cumbana, A., & Bradbury, J. H. (2008). Rising African cassava production, diseases due to high cyanide intake and control measures. Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.3337.

  • Noon, R. A., & Booth, R. H. (1977). Nature of post-harvest deterioration of cassava roots. Transactions of the British Mycological Society, 69(2), 287–290. https://doi.org/10.1016/s0007-1536(77)80049-1.

    Article  Google Scholar 

  • Nweke, F. I., Spencer, D. S. C., & Lynam, J. K. (2002). The cassava transformation: Africa’s best-kept secret. East Lansing: Michigan State University Press.

    Google Scholar 

  • Nyaboga, E., Njiru, J., Nguu, E., Gruissem, W., Vanderschuren, H., & Tripathi, L. (2013). Unlocking the potential of tropical root crop biotechnology in east Africa by establishing a genetic transformation platform for local farmer-preferred cassava cultivars. Frontiers in Plant Science, 4, 526. https://doi.org/10.3389/fpls.2013.00526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nzwalo, H., & Cliff, J. (2011). Konzo: From poverty, cassava, and cyanogen intake to toxico-nutritional neurological disease. PLoS Neglected Tropical Diseases. https://doi.org/10.1371/journal.pntd.0001051.

  • Odedina, S., Odedina, J., Ogunkoya, M., & Ojeniyi, S. (2009). Agronomic evaluation of new cassava varieties introduced to farmers in Nigeria, In African Crop Science Conference Proceedings, (pp. 77–80). Uganda: African Crop Science Society.

    Google Scholar 

  • Oguntade, A. E. (2013). Food losses in cassava and maize value chains in Nigeria: Analysis and recommendations for reduction strategies. Eschborn: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.

  • Olsen, K. M. (2004). SNPs, SSRs and inferences on cassava’s origin. Plant Molecular Biology, 56(4), 517–526. https://doi.org/10.1007/s11103-004-5043-9.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, K. M., & Schaal, B. A. (1999). Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proceedings of the National Academy of Sciences of the United States of America, 96, 5586–5591. https://doi.org/10.1073/pnas.96.10.5586

  • Osunde, Z., & Fadeyibi, A. (2012). Storage methods and some uses of cassava in Nigeria. Continental Journal of Agricultural Science, 5(2), 12–18.

    Google Scholar 

  • Osuntokun, B. O. (1973). Ataxic neuropathy Assiciated with high cassava diets in West Africa. In B. Nestel & R. MacIntyre (Eds.), Chronic cassava toxicity (pp. 127–138). Ottawa: International Development Research Centre.

    Google Scholar 

  • Owiti, J., Grossmann, J., Gehrig, P., Dessimoz, C., Laloi, C., Hansen, M. B., et al. (2011). ITRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant Journal, 67(1), 145–156. https://doi.org/10.1111/j.1365-313X.2011.04582.x.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, N. (2012). GCP21: Southern Brazil – The next pest hotspot for cassava? CIAT News (http://www.ciatnews.cgiar.org/).

    Google Scholar 

  • Parmar, A., Kirchner, S. M., Langguth, H., Do, T. F., & Hensel, O. (2017). Boxwood borer Heterobostrychus Brunneus (Coleoptera: Bostrichidae) infesting dried cassava: A current record from southern Ethiopia. Journal of Insect Science, 17(1), 1–8. https://doi.org/10.1093/cercor/bhw393.

    Article  Google Scholar 

  • Ray, R. C., & Swain, M. R. (2012). Bio-ethanol, bio-plastics and other fermented industrial products from cassava starch and flour. In C. M. Pace (Ed.), Cassava: Farming, uses and economic impact (pp. 1–33). New York: Nova Science Publishers, Inc..

    Google Scholar 

  • Rees, D., Westby, A., Tomlins, K. I., Oirschot, Q. E. A. Van, Chemma, M. U. ., Cornelius, E., & Amjad, M. (2012). Tropical root crops. In D. Rees, G. Farrel, & J. Orchard (Eds.), Crop Post-Harvest: Science and Technology: Perishables (first edit., pp. 392–396). Sussex: Wiley Blackwell publishing ltd. UK.

  • Reilly, K., Gómez-Vásquez, R., Buschmann, H., Tohme, J., & Beeching, J. R. (2004). Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Molecular Biology, 56, 621–637. https://doi.org/10.1007/s11103-005-2271-6.

    Article  Google Scholar 

  • Reynolds, T. W., Waddington, S. R., Anderson, C. L., Chew, A., True, Z., & Cullen, A. (2015). Environmental impacts and constraints associated with the production of major food crops in sub-Saharan Africa and South Asia. Food Security, 7(4), 795–822. https://doi.org/10.1007/s12571-015-0478-1.

    Article  Google Scholar 

  • Rickard, J. E. (1985). Physiological deterioration of cassava roots. Journal of the Science of Food and Agriculture, 36(3), 167–176. https://doi.org/10.1002/jsfa.2740360307.

    Article  Google Scholar 

  • Sánchez, T., Chávez, A. L., Ceballos, H., Rodriguez-Amaya, D. B., Nestel, P., & Ishitani, M. (2006). Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. Journal of the Science of Food and Agriculture, 86(4), 634–639. https://doi.org/10.1002/jsfa.2371.

    Article  Google Scholar 

  • Sargent, S. A. (2002). Cassava. Horticultural Sciences Department University of Florida, Gainesville, FL. https://www.researchgate.net/profile/Richard_Visser/publication/40108387_Cassava/links/0c960525c291948fc8000000.pdf.

  • Shigaki, T. (2016). Cassava: Nature and uses. In B. Caballero, P. Finglas, & F. Toldra (Eds.), Encyclopedia of food and health (pp. 687–693). Oxford: Elsevier Ltd, UK.

    Chapter  Google Scholar 

  • Smith, R. E., Osothsilp, C., Bicho, P., & Gregory, K. F. (1986). Improvement in the protein content of cassava by Sporotrichumpulverulentum in solid state culture. Biotechnology Letters, 8(1), 31–36.

    Article  CAS  Google Scholar 

  • Sriroth, K., Santisopasri, V., Petchalanuwat, C., Kurotjanawong, K., Piyachomkwan, K., & Oates, C. (1999). Cassava starch granule structure–function properties: Influence of time and conditions at harvest on four cultivars of cassava starch. Carbohydrate Polymers, 38(2), 161–170. https://doi.org/10.1016/S0144-8617(98)00117-9.

    Article  CAS  Google Scholar 

  • Storey, H. (1936). Virus diseases on east African plants. VI. A progress report on studies of the disease of cassava. East African Agricultural Journal, 2, 34–39.

    Google Scholar 

  • Thylmann, D., Druzhinina, E., & Deimling, S. (2013). The ecological footprint of cassava and maize post-harvest-losses in Nigeria: A life cycle assessment. Eschborn: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. https://www.giz.de/fachexpertise/downloads/giz2013-en-report-food-loss-of-maize-and-cassava.pdf

  • Tylleskär, T., Rosling, H., Banea, M., Bikangi, N., Cooke, R. D., & Poulter, N. H. (1992). Cassava cyanogens and konzo, an upper motoneuron disease found in Africa. The Lancet, 339(8787), 208–211. https://doi.org/10.1016/0140-6736(92)90006-O.

    Article  Google Scholar 

  • Uchechukwu-Agua, A. D., Caleb, O. J., & Opara, U. L. (2015). Postharvest handling and storage of fresh cassava root and products: A review. Food and Bioprocess Technology, 8(4), 729–748. https://doi.org/10.1007/s11947-015-1478-z.

    Article  Google Scholar 

  • USDA. (2016). National Nutrient Database for Standard Reference Release, 28 https://ndb.nal.usda.gov/ndb/foods/show/2907?manu=&fgcd=&ds=. Accessed 30 Nov 2016.

  • Uzokwe, V. N. E., Mlay, D. P., Masunga, H. R., Kanju, E., Odeh, I. O. A., & Onyeka, J. (2016). Combating viral mosaic disease of cassava in the Lake zone of Tanzania by intercropping with legumes. Crop Protection, 84, 69–80. https://doi.org/10.1016/j.cropro.2016.02.013.

    Article  Google Scholar 

  • Waddington, S. R., Li, X., Dixon, J., Hyman, G., & de Vicente, M. C. (2010). Getting the focus right: Production constraints for six major food crops in Asian and African farming systems. Food Security, 2(1), 27–48. https://doi.org/10.1007/s12571-010-0053-8.

    Article  Google Scholar 

  • Weerarathne, L. V. Y., Marambe, B., & Chauhan, B. S. (2016). Does intercropping play a role in alleviating weeds in cassava as a non-chemical tool of weed management? – A review. Crop Protection, 95, 81–88. https://doi.org/10.1016/j.cropro.2016.08.028.

    Article  Google Scholar 

  • Yi, Y., Yulan, L., Tao, W., & Meiyun, Z. (2016). Design of the Self-Propelled Harvester for cassava. Journal of Agricultural Mechanization Research, 4, 22.

    Google Scholar 

  • Youpan, S., Yulan, L., & Danping, C. (2012). No title. Journal of Agricultural Mechanization Research, 2, 89–92.

    Google Scholar 

  • Zidenga, T. (2012). Delaying post-harvest physiological deterioration in cassava. VA: Virginia Tech Blacksburg http://www.isb.vt.edu/news/2012/Aug/Zidenga.pdf.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the German Academic Exchange Services (DAAD) and GlobeE project RELOAD (Grant No. 031A247A) funded by Ministry of Education and Research and Federal Ministry for Economic Cooperation and Development, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Parmar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmar, A., Sturm, B. & Hensel, O. Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Sec. 9, 907–927 (2017). https://doi.org/10.1007/s12571-017-0717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-017-0717-8

Keywords

Navigation