Skip to main content

Advertisement

Log in

Threats to cassava production: known and potential geographic distribution of four key biotic constraints

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Insect pests and plant diseases reduce cassava yields substantially, posing a threat to food security throughout the developing world. While agricultural scientists have recognized these threats, few assessments of the geographic distribution of cassava pests and diseases have been made at the global scale. The goal of this study is to make such an evaluation for four key biotic constraints to cassava production in developing countries: whiteflies, cassava green mites, cassava mosaic disease and cassava brown streak disease. Occurrence records were obtained from laboratory and biodiversity databases and from the scientific literature. These records were then used in ecological niche models to predict the potential distribution of cassava pests and diseases. The distribution maps were cross validated by holding back 20% of the occurrence records. Potential distribution maps were developed by combining the results of the best ecological niche models. Hotspots for potential cassava pest and disease outbreaks include the Mato Grosso in Brazil, northern South America, the African rift valley, the southern tip of India and much of Southeast Asia, where all four biotic constraints show high potential suitability. Our work highlights how potential geographical shifts in infestation hotspots for several cassava biotic constraints will require intensified monitoring, evaluation and research to prevent yield losses and ensure food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The study excluded Cassava Mealybug due to the lack of information on the actual distribution of the pest. However, future research should include the mealybug due to its history of economic damage in Africa.

References

  • Abele, S., Ntawuruhunga, P., Odendo, M., Obiero, H., Twine, E., & Odenya, J. (2005). Effectiveness of breeding and disseminating cassava mosaic virus disease (CMD)-resistant cassava varieties in Western Kenya. Proceedings of the seventh African Crop Science Conference, Kampala, 5–9 December 2005. In J. S. Tenwya, E. Adipla, P. Nampala, G. Tusiome, P. Okori & W. Kyamuhangire (Eds.), (pp. 233–237). Uganda: African Crop Science Conference Proceedings.

  • Alabi, O. J., Ogbe, F. O., Bandyopadhyay, R., Kumar, P. L., Dixon, A. G. O., Hughes, J. D., et al. (2008). Alternate hosts of African cassava mosaic virus and East African cassava mosaic Cameroon virus in Nigeria. Archives of Virology, 153(9), 1743–1747.

    Article  PubMed  CAS  Google Scholar 

  • Albergaria, N. M. S., & Cividanes, E. F. J. (2002). Exigências Térmicas de Bemisia tabaci (Genn.) Biótipo B (Hemiptera: Aleyrodidae). Neotropical Entomology, 31(3), 359–363.

    Google Scholar 

  • Alicai, T., Omongo, C. A., Maruthi, M. N., Hillocks, R. J., Baguma, Y., Kawuki, R., et al. (2007). Re-emergence of Cassava brown streak disease in Uganda. Plant Disease, 91(1), 24–29.

    Article  CAS  Google Scholar 

  • Anderson, R. P., Lew, D., & Peterson, A. T. (2003). Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling, 162(3), 211–232.

    Article  Google Scholar 

  • Anderson, P. K., & Morales, F. J. (2005). Whitefly and whitefly-borne viruses in the tropics: building a knowledge base for global action. In Publicación CIAT. Cali, Colombia: International Center for Tropical Agriculture.

  • Bellotti, A. C. (2002). Arthropod pest. In R. J. Hillocks, J. M. Thresh, & A. C. Bellotti (Eds.), Cassava: biology, production and utilization (pp. 209–235). Wallingford: CABI Publishing.

    Chapter  Google Scholar 

  • Bellotti, A. C., Arias, B., Vargas, O., & Peña, J. E. (2002). Pérdidas en rendimiento del cultivo de la yuca causadas por insectos y ácaros (Vol. 236). Palmira: CIAT.

  • Benito de Pando, B., & Peñas de Giles, J. (2007). Aplicación de modelos de distribución de especies a la conservación de la biodiversidad en el sureste de la Península Ibérica. GeoFocus, 7, 100–119.

    Google Scholar 

  • Breu, M. (2005). Eine starke Wurzel. (2008). Zürich: Eldgenössische Technische Hochschule Zürich, ETH.

  • Brown, J. K., Frohlich, D. R., & Rosell, C. (1995). The sweetpotato or silverleaf whiteflies: biotypes of B. tabaci or a species complex? Annual Review of Entomology, 40, 511–534.

    Article  CAS  Google Scholar 

  • Busby, J. R. (1991). Bioclim- a bioclimate analysis and prediction system. Plant Protection Quarterly, 6(1), 8–9.

    Google Scholar 

  • CABI. (2007). CPC Report. Crop Protetion Compendium.

  • Cáceres, S. (2004). Moscas blancas del complejo Bemisia tabaci en cultivos hortícolas de Corrientes. Estrategias de manejo. Jornada de Actualización, 9–13.

  • Calvert, L. A. (1994). The safe movement of cassava germplasm. In I. N. F. C. G. Resources (Ed.), Report of the first meeting of the international network for cassava genetic resources, Cali, Colombia, 18–23 August 1992. International Plant Genetic Resources Institute, (pp. 163–165). Rome: International Crop Network Series.

  • Carabali, A. (2004). Potencial de resistencia de diferentes genotipos de yuca Manihot esculenta Crantz al “biotipo B” de Mosca blanca Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Cali: Universidad del Valle.

    Google Scholar 

  • Carabali, A., Bellotti, A. C., Montoya-Lerma, J., & Cuellar, M. E. (2005). Adaptation of Bemisia tabaci biotype B (Gennadius) to cassava, Manihot esculenta (Crantz). Crop Protection, 24(7), 643–649.

    Article  Google Scholar 

  • Cock, J. H. (1982). Cassava: a basic energy source in the tropics. Science, 218(4574), 755–762.

    Article  PubMed  CAS  Google Scholar 

  • Colvin, J., Omongo, C. A., Maruthi, M. N., Otim-Nape, G. W., & Thresh, J. M. (2004). Dual begomovirus infections and high Bemisia tabaci populations: two factors driving the spread of a cassava mosaic disease pandemic. Plant Pathology, 53(5), 577–584.

    Article  Google Scholar 

  • Coulibaly, O., Manyong, V. M., Yaninek, S., Hanna, R., Sanginga, P., Endamana, D., Adesina, A., Toko, M., & Neuenschwander, P. (2004). Economic impact assessment of classical biological control of cassava Greenmite in West Africa. Cotonou – Benin Republic: IITA.

  • De Barro, P. J., Liu, S. S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1–19.

    Article  PubMed  Google Scholar 

  • Delalibera, I. & Humber, R. (2004). Neozygites tanajoae sp. nov., a pathogen of the cassava green mite. Mycologia, 96 (5), 1002–1009.

    Google Scholar 

  • De Souza, M. M. E., De Giovanni, R., Ferreira de Siqueira, M., Sutton, T., Brewer, P., Scachetti Pereira, R., et al. (2009). Open Modeller: a generic approach to species’ potential distribution modelling. Geoinformatica.

  • Doreste, E. (1982). El Complejo de ácaros tetraníquidos, como plaga importante del cultivo de la yuca. Revista de la Facultad de Agronomía(Maracay), 12(3–4), 249–254.

    Google Scholar 

  • Drake, J. M., Randin, C., & Guisan, A. (2006). Modelling ecological niches with support vector machines. Journal of Applied Ecology, 43(3), 424–432.

    Article  Google Scholar 

  • Dutt, N., Briddon, R. W., & Dasgupta, I. (2005). Identification of a second begomovirus, Sri Lankan cassava mosaic virus, causing cassava mosaic disease in India. Archives of Virology, 150(10), 2101–2108.

    Article  PubMed  CAS  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.

    Article  Google Scholar 

  • Ellsworth, P. C., & Martinez-Carrillo, J. L. (2001). IPM for Bemisia tabaci: a case study from North America. Crop Protection, 20, 853–869.

    Article  Google Scholar 

  • EPPO. (2006a). Distribution Maps of Quarantine Pest for Europe: BEMITA. European and Mediterranean Plant Protection Organization. http://eppt.eppo.org/

  • EPPO. (2006b). Distribution Maps of Quarantine Pest for Europe: BEMIAR. European and Mediterranean Plant Protection Organization. http://eppt.eppo.org/

  • FAO & IFAD. (2000). The Worl cassava economy. Facts, trends and outlook. Roma: FAO & IFAD.

  • FAO & IFAD. (2005). Proceedings of the validation forum on the Global Cassava Development Strategy (Vol. 2). Roma: FAO.

  • FAO (2008). Cassava for food and energy security. In Newsroom (Ed.), (pp. s.p.). Rome: FAO.

  • Fauquet, C., & Fargette, D. (1990). African cassava mosaic virus: etiology, epidemiology and control. Plant Disease, 74(6), 404–411.

    Article  Google Scholar 

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.

    Article  Google Scholar 

  • Fondong, V. N., Pita, J. S., Rey, M. R., De Kochko, A., Beachy, R. N., Fauquet, C., et al. (2000). Evidence of synergism between African cassava mosaic virus and a new double-recombinant geminivirus infecting cassava in Cameroon. Journal of General Virology, 81, 287–297.

    PubMed  CAS  Google Scholar 

  • Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009.

    Article  Google Scholar 

  • Gutierrez, A. P., Yaninek, J. S., Wermelinger, B., Herren, H. R., & Ellis, C. K. (1988). Analysis of biological control of cassava pests in Africa III. Cassava green mite Mononyhellus tanajoa. Journal of Applied Ecology, 25, 941–950.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.

    Article  Google Scholar 

  • Hillocks, R. J., & Thresh, J. M. (2000) Cassava Mosaic and Cassava Brown Streak Virus diseases in Africa: a comparative guide to symptoms and aetiologies. Roots, 7(1), 1–8.

    Google Scholar 

  • Hillocks, R. J., & Jennings, D. L. (2003). Cassava brown streak disease: a review of present knowledge and research needs. International Journal of Pest Management, 49(3), 225–234.

    Article  Google Scholar 

  • Hirano, K., Budiyanto, E., & Winarni, S. (1993) Biological characteristics and forecasting outbreaks of the whitefly, Bemisia tabaci, a vector of virus diseases in soybean fields ASPAC Food & Fertilizer Technology Center.

  • IITA & CIAT. (1997). Centers declare victory over the Cassava green mite. CGIAR news, 4(4).

  • IITA. (2007). Solution found for cassava root-rot devastation in Africa. IITA News, Dar es Salaam, Tanzania.

    Google Scholar 

  • International Committee on Taxonomy of Viruses, I. (2010). 2010.001aP. (pp. 1–8): ICTV Files and discussions.

  • Ko, C., Chan, S., & Hu, C. (2005). Survey of Whiteflies and their transmission of plant viruses in Taiwan: FFTC.

  • Legg, J. P., French, R., Rogan, D., Okao-Okuja, G., & Brown, J. K. (2002). A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Molecular Ecology, 11(7), 1219–1229.

    Article  PubMed  CAS  Google Scholar 

  • Legg, J. P., & Hillocks, R. J. (2003). Cassava Brown Streak Virus Disease: past, present and future. Procedings of an international Workshop, Mombasa, Kenya, 27–30 October 2002. (pp. 100). Aylesford, UK: Natural Resources International Limited.

  • Legg, J. P., Ndjelassili, F., & Okao-Okuja, G. (2004). First report of cassava mosaic disease and cassava mosaic geminiviruses in Gabon. Plant Pathology, 53(2), 232–232.

    Article  Google Scholar 

  • Legg, J. P., & Ogwal, S. (1998). Changes in the incidence of African cassava mosaic virus disease the abundance of its whitefly vector along south-north transects in Uganda. Journal of Applied Entomology, 122, 169–178.

    Article  Google Scholar 

  • Legg, J. P., & Raya, M. D. (1998). Survey of cassava virus diseases in Tanzania. International Journal of Pest Management, 44(1), 17–23.

    Article  Google Scholar 

  • Legg, J., & Thresh, J. (2000). Cassava mosaic virus disease in East A frica: a dynamic disease in a changing environment. Virus Research, 71, 135–149.

    Article  PubMed  CAS  Google Scholar 

  • Lister, R. M. (1959). Mechanical transmission of cassava brown streak virus. Nature, 183(4675), 1588–1589.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S. S., De Barro, P. J., Xu, J., Luan, J. B., Zang, L. S., Ruan, Y. M., et al. (2007). Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 318(5857), 1769–1772.

    Google Scholar 

  • Martin, N. A. (1999). Whitefly. Biology, identification and life cycle. Crop and Food Research, 91, 1–8.

    Google Scholar 

  • Maruthi, M. N., Colvin, J., Seal, S., Gibson, G., & Cooper, J. (2002). Co-adaptation between cassava mosaic geminiviruses and their local vector populations. Virus Research, 86, 71–85.

    Article  PubMed  CAS  Google Scholar 

  • Maruthi, M. N., Hillocks, R. J., Mtunda, K., Raya, M. D., Muhanna, M., Kiozia, H., et al. (2005). Transmission of Cassava brown streak virus by Bemisia tabaci (Gennadius). Journal of Phytopathology, 153(5), 307–312.

    Article  Google Scholar 

  • Maruthi, M. N., Seal, S., Colvin, J., Briddon, R. W., & Bull, S. E. (2004). East African cassava mosaic Zanzibar virus—a recombinant begomovirus species with a mild phenotype. Archives of Virology, 149(12), 2365–2377.

    Article  PubMed  CAS  Google Scholar 

  • Mbanzibwa, D. R., Tian, Y. P., Tugume, A. K., Mukasa, S. B., Tairo, F., Kyamanywa, S., et al. (2009). Genetically distinct strains of Cassava brown streak virus in the Lake Victoria basin and the Indian Ocean coastal area of East Africa. Archives of Virology, 154(2), 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Mbanzibwa, D. R., Tian, Y. P., Tugume, A. K., Mukasa, S. B., Tairo, F., Kyamanywa, S., et al. (2011). Simultaneous virus-specific detection of the two cassava brown streak-associated viruses by RT-PCR reveals wide distribution in East Africa, mixed infections, and infections in Manihot glaziovii. Journal of Virological Methods, 171(2), 394–400.

    Article  PubMed  CAS  Google Scholar 

  • Mejía de Tafur, M. S. (2002). Fisiología de la Yuca (Manihot esculenta Crantz). In B. Ospina & H. Ceballos (Eds.), La yuca en el tercer Milenio: sistemas modernos de producción, procesamiento, utilización y comercialización (pp. 34–45). Cali, Colombia: CIAT.

  • Monger, W. A., Alicai, T., Ndunguru, J., Kinyua, Z. M., Potts, M., Reeder, R. H., et al. (2010). The complete genome sequence of the Tanzanian strain of Cassava brown streak virus and comparison with the Ugandan strain sequence. Archives of Virology, 155(3), 429–433.

    Article  PubMed  CAS  Google Scholar 

  • Monger, W. A., Seal, S., Cotton, S., & Foster, G. D. (2001a). Identification of different isolates of Cassava brown streak virus and development of a diagnostic test. Plant Pathology, 50(6), 768–775.

    Article  CAS  Google Scholar 

  • Monger, W. A., Seal, S., Isaac, A. M., & Foster, G. D. (2001b). Molecular characterization of the Cassava brown streak virus coat protein. Plant Pathology, 50(4), 527–534.

    Article  CAS  Google Scholar 

  • Morales, F. J., & Jones, P. G. (2004). The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Research, 100(1), 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Mware, B., Olubayo, F., Narla, R., Songa, J., Amata, R., Kyamanywa, S., et al. (2010). First record of spiraling whitefly in coastal Kenya: emergence, host range, distribution and association with cassava brown streak virus disease. International Journal of Agriculture and Biology, 12(3), 411–415.

    Google Scholar 

  • Ntawuruhunga, P., & Legg, J. (2007). New spread of Cassava Brown Streak Virus Disease and its implications for the movement of cassava germplasm in the east and central African region. USAID, Crop Crisis Control Project C3P.

  • Nunes, C., Lucas, E., & Coderre, D. (2005). Diagnóstico sobre el conocimiento y manejo de Bemisia tabaci por los productores del norte nicargüense. Manejo Integrado de plagas y Agroecología, 76, 75–79.

    Google Scholar 

  • Okao-Okuja, G., Legg, J. P., Traore, L., & Jorge, M. A. (2004). Viruses associated with cassava mosaic disease in Senegal and Guinea Conakry. Journal of Phytopathology, 152(2), 69–76.

    Article  Google Scholar 

  • Ortega-Huerta, M. A., & Peterson, A. T. (2008). Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Revista Mexicana de Biodiversidad, 79(1), 205–216.

    Google Scholar 

  • Otim-Nape, G. W., & Thresh, J. M. (2006) The recent epidemic of cassava mosaic virus disease in Uganda. In: B. M. Cooke, D. Gareth Jones, & B. Kaye (Eds), The epidemiology of plant diseases. 2 Ed (p. 576). Netherlands: Springer.

  • Patil, B. L., & Fauquet, C. M. (2009). Cassava mosaic geminiviruses: actual knowledge and perspectives. Molecular Plant Pathology, 10(5), 685–701.

    Article  PubMed  CAS  Google Scholar 

  • Patil, B. L., Rajasubramaniam, S., Bagchi, C., & Dasgupta, I. (2005). Both Indian cassava mosaic virus and Sri Lankan cassava mosaic virus are found in India and exhibit high variability as assessed by PCR-RFLP. Archives of Virology, 150(2), 389–397.

    Article  PubMed  CAS  Google Scholar 

  • Pearman, P., Guisan, A., Broennimann, O., & Randin, C. (2007). Trends in Ecology & Evolution, 23(3), 149–157.

    Article  Google Scholar 

  • Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371.

    Article  Google Scholar 

  • Perring, T. (2001). The Bemisia tabaci species complex. Crop Protection, 20, 725–737.

    Article  Google Scholar 

  • Peterson, A. (2003). Predicting the geography of species’ invasions via ecological niche modeling. The Quarterly Review of Biology, 78(4), 419–433.

    Article  PubMed  Google Scholar 

  • Peterson, A. T., Papes, M., & Soberon, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72.

    Article  Google Scholar 

  • Peterson, A., & Vieglais, D. (2001). Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. BioScience, 51(5), 363–371.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.

    Article  Google Scholar 

  • Phillips, S. J., & Dudik, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.

    Article  Google Scholar 

  • Pita, J. S., Fondong, V. N., Sangare, A., Otim-Nape, G. W., Ogwal, S., & Fauquet, C. M. (2001). Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. Journal of General Virology, 82, 655–665.

    PubMed  CAS  Google Scholar 

  • Rangel, T. F., Diniz-Filho, F. A., & Bini, L. M. (2006). Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global ecology and biogeography, 15, 321–327.

    Google Scholar 

  • Renkow, M., & Byerlee, D. (2010). The impacts of CGIAR research: A review of recent evidence. Food Policy, 35(5), 391–402.

    Article  Google Scholar 

  • Salas, J. (2003). Caracterización del vuelo de adultos de mosca blanca Bemisia tabaci. Manejo Integrado de Plagas, 67, 44–50.

    Google Scholar 

  • Skovard, H., Tomkiewicz, J., Nachman, G., & Münster-Swendsen, M. (1993). The effect of the cassava green mite Mononychellus tanajoa on the growth and yield of cassava Manihot esculenta in a seasonally dry area in Kenya. Experimental & Applied acarolgy, 17, 41–58.

    Google Scholar 

  • Sseruwagi, P., Maruthi, M. N., Colvin, J., Rey, M. E. C., Brown, J. K., & Legg, J. P. (2006). Colonization of non-cassava plant species by cassava whiteflies (Bemisia tabaci) in Uganda. Entomologia Experimentalis Et Applicata, 119(2), 145–153.

    Article  CAS  Google Scholar 

  • Sseruwagi, P., Okao-okuja, G., Kalyebi, A., Muyango, S., Aggarwal, V., & Legg, J. (2005). Cassava mosaic geminiviruses associated with cassava mosaic disease in Rwanda. International Journal of Pest Management, 51(1), 17–23.

    Article  Google Scholar 

  • Sutherst, R. W., & Bourne, A. S. (2009). Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biological Invasions, 11(6), 1231–1237.

    Article  Google Scholar 

  • Sutton, T., De Giovanni, R., & Ferreira de Siqueira, M. (2007). Introducing Openmodeller - A fundamental Niche Modelling framework. Osgeojournal, 1.

  • Titeux, N. (2006). Modelling species distribution when habitat occupancy departs from suitability. Louvain: Université catholique de Louvain.

    Google Scholar 

  • Trabucco, A., Zomer, R. J., Bossio, D. A., van Straaten, O., & Verchot, L. V. (2008). Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies. Agriculture, Ecosystems and Environment, 126(1–2), 81–97.

    Article  Google Scholar 

  • Waddington, S. R., Li, X. Y., Dixon, J., Hyman, G., & de Vicente, M. C. (2010). Getting the focus right: production constraints for six major food crops in Asian and African farming systems. Food Security, 2(1), 27–48.

    Article  Google Scholar 

  • Winter, S., Koerbler, M., Stein, B., Pietruszka, A., Paape, M., & Butgereitt, A. (2010). Analysis of cassava brown streak viruses reveals the presence of distinct virus species causing cassava brown streak disease in East Africa. Journal of General Virology, 91, 1365–1372.

    Article  PubMed  CAS  Google Scholar 

  • Wisz, M. S., & Guisan, A. (2009). Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecology, 9(8).

  • Xu, J., De Barro, P. J., & Liu, S. S. (2010). Reproductive incompatibility among genetic groups of Bemisia tabaci supports the proposition that the whitefly is a cryptic species complex. Bulletin of Entomological Research, 100, 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Yaninek, J. (1988). Continental dispersal of the cassava green mite, an exotic pest in Africa, and implications for biological control. Experimental and Applied Acarology, 4, 211–224.

    Article  Google Scholar 

  • Yaninek, J., Moraes, G.J., & Markham, R. (1989) Handbook on the cassava green mite (Mononychellus tanajoa) in Africa: a guide to its biology and procedures for implementing classical biological control Nigeria: IITA, 140 p.

  • You, L. Z., & Wood, S. (2006). An entropy approach to spatial disaggregation of agricultural production. Agricultural Systems, 90(1–3), 329–347.

    Article  Google Scholar 

  • Zhang, P., Vanderschuren, H., Futterer, J., & Gruissem, W. (2005). Resistance to cassava mosaic disease in transgenic cassava expressing antisense RNAs targeting virus replication genes. Plant Biotechnology Journal, 3(4), 385–397.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staffs of the International Center for Tropical Agriculture’s (CIAT) virology and entomology labs for providing data on their disease and pest collections. Clair Hershey and Kris Wyckhuys of CIAT and two anonymous reviewers provided valuable comments on the manuscript. We also thank Ramón Serna of the Universidad del Valle, Colombia, for excellent supervision of a related thesis. Jason Beddow of the University of Minnesota provided ongoing support in our effort to solicit expert opinion about the geographic distribution of pests and diseases. The research was made possible by financial support from the Harvest Choice project (http://harvestchoice.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Vanessa Herrera Campo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 6060 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera Campo, B.V., Hyman, G. & Bellotti, A. Threats to cassava production: known and potential geographic distribution of four key biotic constraints. Food Sec. 3, 329–345 (2011). https://doi.org/10.1007/s12571-011-0141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-011-0141-4

Keywords

Navigation