Skip to main content

Advertisement

Log in

Postharvest Handling and Storage of Fresh Cassava Root and Products: a Review

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The increase in global demand for healthy food products and initiatives to ensure food security in developing countries has focused on the cultivation of drought-resistant and biofortified cassava varieties. Cassava is a staple root crop grown in subtropical and tropical climates. Cassava flour is gluten free, which can be used as composite flour in essential foods such as bread. Thus, the role of postharvest handling of freshly harvested cassava root is essential, owing to the rapid physiological deterioration of the root soon after harvest. This situation confers a limited shelf life and, thus, creates poor utilization of the cassava root. However, processing cassava root into other food forms such as fufu, garri, starch and high-quality flour enhances stability and long-term storage. This article critically reviewed the postharvest handling, processing and storage of fresh cassava root. Highlighting on the role of storage and minimal processing on sustainable cassava production, various spoilage mechanisms of cassava root were identified. In developing countries, cassava root is a valuable food and energy source, and understanding the role of optimum postharvest handling, processing and storage techniques would alleviate some concerns of food insecurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamade, C., & Azogu, I. (2013). Comparison of proximate composition, physio–mechanical properties and economics of production of cassava pellets derived from cassava chips and mash. Journal of Agricultural Engineering and Technology, 21, 18–26.

    Google Scholar 

  • Adamolekun, B. (2011). Neurological disorders associated with cassava diet: a review of putative etiological mechanisms. Metabolic Brain Disorder, 26, 79–85.

    CAS  Google Scholar 

  • Adebowale, A., Sanni, L., & Awonorin, S. (2005). Effect of texture modifiers on the physicochemical and sensory properties of dried fufu. Food Science and Technology International, 11, 373–382.

    CAS  Google Scholar 

  • Adebowale, A. R., Sanni, L., Awonorin, S., Daniel, I., & Kuye, A. (2007). Effect of cassava varieties on the sorption isotherm of tapioca grits. International Journal of Food Science and Technology, 42, 448–452.

    CAS  Google Scholar 

  • Adejumo, B., & Raji, A. (2012). Microbiological safety and sensory attributes of gari in selected packaging materials. Academic Research International, 3, 153–161.

    Google Scholar 

  • Adelekan, B. (2010). Investigation of ethanol productivity of cassava crop as a sustainable source of biofuel in tropical countries. African Journal of Biotechnology, 9, 5643–5650.

    CAS  Google Scholar 

  • Adelekan, B. (2012). Cassava as a potent energy crop for the production of ethanol and methane in tropical countries. International Journal of Thermal and Environmental Engineering, International Association for Sharing Knowledge and Sustainability (IASKS), Canada, 4, 25–32.

    Google Scholar 

  • Agbor-Egbe, T., & Mbome, I. L. (2006). The effects of processing techniques in reducing cyanogen levels during the production of some Cameroonian cassava foods. Journal of Food Composition and Analysis, 19, 354–363.

    CAS  Google Scholar 

  • Akingbala, J. O., Oyewole, O. B., Uzo-Peters, P. I., Karim, R. O., & Baccus-Taylor, G. S. (2005). Evaluating stored cassava quality in gari production. Journal of Food, Agriculture and Environment, 3, 75–80.

    Google Scholar 

  • Allem, A. C. (2002). The origins and taxonomy of cassava. In R. J. Hillocks, J. M. Tresh, & A. C. Bellohi (Eds.), Cassava: Biology, Production and Utilization (pp. 1–16). New York: CABI publications.

    Google Scholar 

  • Aloys, N., & Hui Ming, Z. (2006). Traditional cassava foods in Burundi—a review. Food Reviews International, 22, 1–27.

    Google Scholar 

  • Aracena, J.J. (1993). Mechanism of vascular streaking, a postharvest physiological disorder of cassava roots. Thesis, Horticultural Sciences Department, University of Florida, Gainesville, FL.

  • Aryee, F. N. A., Oduro, I., Ellis, W. O., & Afuakwa, J. J. (2006). The physicochemical properties of flour samples from the roots of 31 varieties of cassava. Food Control, 17, 916–922.

    CAS  Google Scholar 

  • Bayoumi, S. A., Rowan, M. G., Beeching, J. R., & Blagbrough, I. S. (2010). Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots. Phytochemistry, 71, 598–604.

    CAS  Google Scholar 

  • Brecht, J. K. (2003). Underground storage organs. In J. A. Bartz & J. K. Brecht (Eds.), Postharvest physiology and pathology of vegetables (pp. 625–648). New York: Marcel Dekker.

    Google Scholar 

  • Briani, C., Samaroo, D., & Alaedini, A. (2008). Celiac disease: from gluten to autoimmunity. Autoimmunity Reviews, 7, 644–650.

    CAS  Google Scholar 

  • Burns, A. E., Bradbury, J. H., Cavagnaro, T. R., & Gleadow, R. M. (2012). Total cyanide content of cassava food products in Australia. Journal of Food Composition and Analysis, 25, 79–82.

    CAS  Google Scholar 

  • Burrell, M. (2003). Starch: the need for improved quality or quantity—an overview. Journal of Experimental Botany, 54, 451–456.

    CAS  Google Scholar 

  • Buschmann, H., Rodriguez, M. X., Tohme, J., & Beeching, J. R. (2000). Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of cassava (Manihot esculenta Crantz). Annals of Botany, 86, 1153–1160.

    CAS  Google Scholar 

  • Butt, M. S., Nasir, M., Akhtar, S., & Sharif, K. (2004). Effect of moisture and packaging on the shelf life of wheat flour. Internet Journal of Food Safety, 4, 1–6.

    Google Scholar 

  • Caleb, O. J., Opara, U. L., & Witthuhn, C. R. (2012). Modified atmosphere packaging of pomegranate fruit and arils: a review. Food and Bioprocess Technology, 5, 15–30.

    CAS  Google Scholar 

  • Cardoso, A. P., Mirione, E., Ernesto, M., Massaza, F., Cliff, J., Rezaul Haque, M., & Bradbury, J. H. (2005). Processing of cassava roots to remove cyanogens. Journal of Food Composition and Analysis, 18, 451–460.

    CAS  Google Scholar 

  • Charles, A., Sriroth, K., & Huang, T. (2005). Proximate composition, mineral contents, hydrogen cyanide and phytic acid of 5 cassava genotypes. Food Chemistry, 92, 615–620.

    CAS  Google Scholar 

  • Chávez, A. L., Sánchez, T., Ceballos, H., Rodriguez-Amaya, D. B., Nestel, P., Tohme, J., & Ishitani, M. (2007). Retention of carotenoids in cassava roots submitted to different processing methods. Journal of the Science of Food and Agriculture, 87, 388–393.

    Google Scholar 

  • Chiwona‐Karltun, L., Brimer, L., Kalenga Saka, J. D., Mhone, A. R., Mkumbira, J., Johansson, L., Bokanga, M., Mahungu, N. M., & Rosling, H. (2004). Bitter taste in cassava roots correlates with cyanogenic glucoside levels. Journal of the Science of Food and Agriculture, 84, 581–590.

    Google Scholar 

  • Chukwuemeka, O. C. (2007). Effect of process modification on the physio-chemical and sensory quality of fufu-flour and dough. African Journal of Biotechnology, 6, 1949–1953.

    CAS  Google Scholar 

  • Cumbana, A., Mirione, E., Cliff, J., & Bradbury, J. H. (2007). Reduction of cyanide content of cassava flour in Mozambique by the wetting method. Food Chemistry, 101, 894–897.

    CAS  Google Scholar 

  • Daramola, O., Idowu, M., Atanda, O., & Oguntona, C. (2010). Effects of packaging material on the quality of “pupuru” flour during storage. African Journal of Food Science, 4, 258–263.

    CAS  Google Scholar 

  • Dipeolu, A., Adebayo, K., Ayinde, I., Oyewole, O., Sanni, L., Pearce, D., Wandschneider, T., White, J., & Westby, A. (2001). Fufu marketing systems in South-West Nigeria. Report, R2626.

  • Doporto, M. C., Dini, C., Mugridge, A., Viña, S. Z., & García, M. A. (2012). Physicochemical, thermal and sorption properties of nutritionally differentiated flours and starches. Journal of Food Engineering, 113, 569–576.

    CAS  Google Scholar 

  • Eddy, N., Udofia, P., & Eyo, D. (2007). Sensory evaluation of wheat/cassava composite bread and effect of label information on acceptance and preference. African Journal of Biotechnology, 6, 2415–2418.

    Google Scholar 

  • Eddy, N. O., Essien, E., Ebenso, E. E., & Ukpe, R. A. (2012). Industrial potential of two varieties of cocoyam in bread making. Journal of Chemistry, 9, 451–464.

    CAS  Google Scholar 

  • Eggleston, G., Omoaka, P. E., & Ihedioha, D. O. (1992). Development and evaluation of products from cassava flour as new alternatives to wheaten breads. Journal of the Science of Food and Agriculture, 59, 377–385.

    CAS  Google Scholar 

  • Eleazu, C., Amajor, J., Ikpeama, A., & Awa, E. (2011). Studies on the nutrient composition, antioxidant activities, functional properties and microbial load of the flours of 10 elite cassava (Manihot esculenta) varieties. Asia Pacific Journal of Clinical Nutrition, 3, 33–39.

    Google Scholar 

  • Eleazu, C., Eleazu, K., Awa, E., & Chukwuma, S. (2012). Comparative study of the phytochemical composition of the leaves of five Nigerian medicinal plants. Journal of Biotechnology and Pharmaceutical Research, 3, 42–46.

    Google Scholar 

  • El-Sharkawy, M. A. (2004). Cassava biology and physiology. Plant Molecular Biology, 56, 481–501.

    CAS  Google Scholar 

  • El-Sharkawy, M. A. (2007). Physiological characteristics of cassava tolerance to prolonged drought in the tropics: implications for breeding cultivars adapted to seasonally dry and semiarid environments. Brazilian Journal of Plant Physiology, 19, 257–286.

    CAS  Google Scholar 

  • Ernesto, M., Cardoso, A. P., Nicala, D., Mirione, E., Massaza, F., Cliff, J., Haque, M. R., & Bradbury, J. H. (2002). Persistent konzo and cyanogen toxicity from cassava in northern Mozambique. Acta Tropica, 82, 357–362.

    CAS  Google Scholar 

  • Etudaiye, H., Nwabueze, T., & Sanni, L. (2009). Quality of fufu processed from cassava mosaic disease (CMD) resistant varieties. African Journal of Food Science, 3, 061–067.

    CAS  Google Scholar 

  • Fadeyibi, A. (2012). Storage methods and some uses of cassava in Nigeria. Continental Journal of Agricultural Science, 5, 12–18.

    Google Scholar 

  • Falade, K. O., & Akingbala, J. O. (2010). Utilization of cassava for food. Food Reviews International, 27, 51–83.

    Google Scholar 

  • Falade, K. O., & Okafor, C. A. (2013). Physicochemical properties of five cocoyam (Colocasia esculenta and xanthosoma sagittifolium) starches. Food Hydrocolloids, 30, 173–181.

    CAS  Google Scholar 

  • Falade, K. O., & Omojola, B. S. (2010). Effect of processing methods on physical, chemical, rheological, and sensory properties of okra (Abelmoschus esculentus). Food and Bioprocess Technology, 3, 387–394.

    Google Scholar 

  • Falade, K. O., Semon, M., Fadairo, O. S., Oladunjoye, A. O., & Orou, K. K. (2014). Functional and physico-chemical properties of flours and starches of african rice cultivars. Food Hydrocolloids, 39, 41–50.

    CAS  Google Scholar 

  • FAO, (2013). Food and Agricultural Division of the United Nations, Statistical Division. FAO http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E.

  • FAO/WHO, (1995). Codex standard for edible cassava flour. Codex Standard 176-1989 Food and Agriculture Organisation and World Health Organisation of the United Nations, Rome, Italy.

  • FAO/WHO, (2005). Codex standard for edible cassava flour. Codex Standard 238-2003 Food and Agriculture Organisation and World Health Organisation of the United Nations, Rome, Italy.

  • FIIRO (2005). Cassava processing. Federal Institue of Industrial Research, Oshodi, Nigeria.

  • Gautam, K., & Tyagi, V. (2006). Microbial surfactants: a review. Journal of Oleo Science, 55, 155–166.

    CAS  Google Scholar 

  • Giami, S., Amasisi, T., & Ekiyor, G. (2004). Comparison of bread making properties of composite flour from kernels of roasted and boiled african breadfruit (Treculia africana decne) seeds. Journal of Materials Research, 1, 16–25.

    Google Scholar 

  • Gil, J.L., Buitrago, A.J.A. (2002). La yuca en la alimentacion animal. In: OspinaB, CeballosH, editors. La Yuca en el Tercer Milenio: Sistemas Modernos de Producción, Procesamiento, Utilización y Comercialización. Cali, Colombia : Centro Internacional de Agricultura Tropical. pp 527-69.

  • Gnonlonfin, G., Hell, K., Fandohan, P., & Siame, A. (2008). Mycoflora and natural occurrence of aflatoxins and fumonisin b1 in cassava and yam chips from Benin, West Africa. International Journal of Food Microbiology, 122, 140–147.

    CAS  Google Scholar 

  • Haggblade, S., Djurfeldt, A. A., Nyirenda, D. B., Lodin, J. B., Brimer, L., Chiona, M., Chitundu, M., Chiwona-Karltun, L., Cuambe, C., & Dolislager, M. (2012). Cassava commercialization in Southeastern Africa. Journal of Agribusiness in Developing and Emerging Economies, 2, 4–40.

    Google Scholar 

  • Hambidge, K. M., Miller, L. V., Westcott, J. E., & Krebs, N. F. (2008). Dietary reference intakes for zinc may require adjustment for phytate intake based upon model predictions. The Journal of Nutrition, 138, 2363–2366.

    CAS  Google Scholar 

  • Hillocks, R., & Jennings, D. (2003). Cassava brown streak disease: a review of present knowledge and research needs. International Journal of Pest Management, 49, 225–234.

    Google Scholar 

  • Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253–267.

    CAS  Google Scholar 

  • Iglesias, C. A., Sanchez, T., & Yeoh, H.-H. (2002). Cyanogens and linamarase activities in storage roots of cassava plants from breeding program. Journal of Food Composition and Analysis, 15, 379–387.

    CAS  Google Scholar 

  • Ikegwu, O., Nwobasi, V., Odoh, M., & Oledinma, N. (2009). Evaluation of the pasting and some functional properties of starch isolated from some improved cassava varieties in Nigeria. African Journal of Biotechnology, 8, 2310–2315.

    CAS  Google Scholar 

  • Ikhu-Omoregbe, D. (2006). Comparison of the sorption isotherm characteristics of two cassava products. International Journal of Food Properties, 9, 167–177.

    CAS  Google Scholar 

  • Inyang, C., Tsav-Wua, J., & Akpapunam, M. (2006). Impact of traditional processing methods on some physico chemical and sensory qualities of fermented casava flour “kpor umilin”. African Journal of Biotechnology, 5, 1985–1988.

    CAS  Google Scholar 

  • Iqbal, T., & Fitzpatrick, J. (2006). Effect of storage conditions on the wall friction characteristics of three food powders. Journal of Food Engineering, 72, 273–280.

    Google Scholar 

  • Iwe, M. O., & Agiriga, A. N. (2014). Pasting properties of ighu prepared from steamed varieties of cassava tubers. Journal of Food Processing and Preservation. doi:10.1111/jfpp 12201.

    Google Scholar 

  • Iyer, S., Mattinson, D. S., & Fellman, J. K. (2010). Study of the early events leading to cassava root postharvest deterioration. Tropical Plant Biology, 3, 151–165.

    Google Scholar 

  • Jansz, E. R., & Uluwaduge, I. (2012). Biochemical aspects of cassava (Manihot esculenta Crantz) with special emphasis on cyanogenic glucosides—a review. Journal of the National Science Foundation of Sri Lanka, 25, 1–24.

    Google Scholar 

  • Jekayinfa, S., & Olajide, J. (2007). Analysis of energy usage in the production of three selected cassava-based foods in Nigeria. Journal of Food Engineering, 82, 217–226.

    Google Scholar 

  • Kader, A. A., & Rolle, R. S. (2004). The role of post-harvest management in assuring the quality and safety of horticultural produce. FAO Agricultural service Bullentin, 152, 13–35.

    Google Scholar 

  • Kannangara, R., Motawia, M. S., Hansen, N. K., Paquette, S. M., Olsen, C. E., Moller, B. L., & Jorgensen, K. (2011). Characterization and expression profile of two udp-glucosyltransferases, ugt85k4 and ugt85k5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava. Plant Journal, 68, 287–301.

    CAS  Google Scholar 

  • Karim, O., Fasasi, O., & Oyeyinka, S. (2009). Gari yield and chemical composition of cassava roots stored using traditional methods. Pakistan Journal of Nutrition, 8, 1830–1833.

    CAS  Google Scholar 

  • Kaur, M., Kaushal, P., & Sandhu, K. S. (2013). Studies on physicochemical and pasting properties of taro (Colocasia esculenta L.) flour in comparison with a cereal, tuber and legume flour. Journal of Food Science and Technology, 50, 94–100.

    CAS  Google Scholar 

  • Kawano, K., & Cock, J. H. (2005). Breeding cassava for underprivileged: institutional, socio-economic and biological factors for success. Journal of Crop Improvement, 14, 197–219.

    Google Scholar 

  • Koehorst-Van Putten, H., Sudarmonowati, E., Herman, M., Pereira-Bertram, I., Wolters, A., Meima, H., De Vetten, N., Raemakers, C., & Visser, R. (2012). Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in indonesia. Transgenic Research, 21, 39–50.

    CAS  Google Scholar 

  • Kolawole, O., Adeyemi, B., Kayode, R., & Ajibola, T. (2009). The drying effect of colour light frequencies on the nutrient and microbial composition of cassava. African Journal of Agricultural Research, 4, 171–177.

    Google Scholar 

  • Konietzny, U., & Greiner, R. (2004). Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology, 35, 12–18.

    Google Scholar 

  • Kormawa, P.M., Ogunfowora, A.M., Babandi, A.M. & Olomo, V. (2002). Needs assessment study for market-driven agricultural technology transfer and commercialisation in Oyo state. UK: IITA.

  • Kostinek, M., Specht, I., Edward, V. A., Schillinger, U., Hertel, C., Holzapfel, W. H., & Franz, C. (2005). Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of gari, a traditional African food. Systematic and Applied Microbiology, 28, 527–540.

    CAS  Google Scholar 

  • Krinsky, N. I., & Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Molecular Aspects of Medicine, 26, 459–516.

    CAS  Google Scholar 

  • Kulchan, R., Boonsupthip, W., & Suppakul, P. (2010). Shelf life prediction of packaged cassava-flour-based baked product by using empirical models and activation energy for water vapor permeability of polyolefin films. Journal of Food Engineering, 100, 461–467.

    CAS  Google Scholar 

  • Kumar, V., Sinha, A. K., Makkar, H. P. S., & Becker, K. (2010). Dietary roles of phytate and phytase in human nutrition: a review. Food Chemistry, 120, 945–959.

    CAS  Google Scholar 

  • Lebot, V. (2009). Tropical root and tuber crops: cassava, sweet potato, yams and aroids. UK, CABI. pp. 81-82.

  • Lebot, V., Champagne, A., Malapa, R., & Shiley, D. (2009). NIR determination of major constituents in tropical root and tuber crop flours. Journal of Agricultural Food Chemistry, 57, 10539–10547.

    CAS  Google Scholar 

  • Loewus, F. (2002). Food phytates (Biosynthesis of phytate in food grains and seeds, pp. 53–61). Baca Raton: CRC press.

    Google Scholar 

  • Mabasa, K.G. (2007). Epidemiology of cassava mosaic disease and molecular characterization of cassava mosaic viruses and their associated whitefly (Bemisia tabaci) vector in South Africa. School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand.

  • Mckey, D., Cavagnaro, T. R., Cliff, J., & Gleadow, R. (2010). Chemical ecology in coupled human and natural systems: people, manioc, multitrophic interactions and global change. Chemoecology, 20, 109–133.

    CAS  Google Scholar 

  • McMahon, J., White, W., & Sayre, R. (1995). Cyanogenesis in cassava (Manihot esculenta). Journal of Experimental Botany, 46, 731–741.

    CAS  Google Scholar 

  • Montagnac, J. A., Davis, C. R., & Tanumihardjo, S. A. (2009). Nutritional value of cassava for use as a staple food and recent advances for improvement. Comprehensive Reviews in Food Science and Food Safety, 8, 181–194.

    CAS  Google Scholar 

  • Morante, N., Sánchez, T., Ceballos, H., Calle, F., Pérez, J. C., Egesi, C., Cuambe, C. E., Escobar, A. F., Ortiz, D., Chávez, A. L., & Fregene, M. (2010). Tolerance to postharvest physiological deterioration in cassava roots. Crop Science, 50, 1333.

    Google Scholar 

  • Mudombi, C.R. (2010). An ex ante economic evaluation of genetically modified cassava in South Africa. MSc (Agic) Dissertation University of Pretoria, South Africa. viewed 2014/01/24.

  • Muzanila, Y., Brennan, J., & King, R. (2000). Residual cyanogens, chemical composition and aflatoxins in cassava flour from Tanzanian villages. Food Chemistry, 70, 45–49.

    CAS  Google Scholar 

  • Nhassico, D., Muquingue, H., Cliff, J., Cumbana, A., & Bradbury, J. H. (2008). Rising african cassava production, diseases due to high cyanide intake and control measures. Journal of the Science of Food and Agriculture, 88, 2043–2049.

    CAS  Google Scholar 

  • Niewinski, M. M. (2008). Advances in celiac disease and gluten-free diet. Journal of the American Dietetic Association, 108, 661–672.

    Google Scholar 

  • Nwabueze, T. U., & Anoruoh, G. A. (2009). Evaluation of flour and extruded noodles from eight cassava mosaic disease (CMD)-resistant varieties. Food and Bioprocess Technology, 4, 80–91.

    Google Scholar 

  • Obadina, A., Oyewole, O., & Odusami, A. (2009). Microbiological safety and quality assessment of some fermented cassava products (lafun, fufu, gari). Scientific Research and Essays, 4, 432–435.

    Google Scholar 

  • Obilie, E. M., Tano-Debrah, K., & Amoa-Awua, W. K. (2003). Microbial modification of the texture of grated cassava during fermentation into akyeke. International Journal of Food Microbiology, 89, 275–280.

    CAS  Google Scholar 

  • Odii, C. (2012). Socio-economic evaluation of cassava production by women farmers in Igbo-Eze north local government area of Enugu State, Nigeria. International Journal of Agricultural Science, Research and Technology, 2, 129–136.

    Google Scholar 

  • Oghenechavwuko, U. E., Saka, G. O., Adekunbi, T. K., & Taiwo, A. C. (2013). Effect of processing on the physico-chemical properties and yield of gari from dried chips. Journal of Food Processing and Technology, 4, 255. doi:10.4172/2157-7110.1000255.

    Google Scholar 

  • Ogiehor, I., & Ikenebomeh, M. (2006). The effects of different packaging materials on the shelf stability of garri. African Journal of Biotechnology, 5, 741–745.

    Google Scholar 

  • Ogugbue, C. J., & Gloria, O. (2011). Bioburden of garri stored in different packaging materials under tropical market conditions. Middle-East Journal of Scientific Research, 7, 741–745.

    Google Scholar 

  • Olaleye, O., Otunola, E., Oyebanji, A., & Adetunji, C. (2013). Effectiveness of trench and moist sawdust as storage methods for maintenance of moisture contents and microorganisims of cassava roots by variety. Journal of Food Science, 2, 19–22.

    Google Scholar 

  • Olaoye, O., Onilude, A., & Idowu, O. (2006). Quality characteristics of bread produced from composite flours of wheat, plantain and soybeans. African Journal of Biotechnology, 5, 1102–1106.

    Google Scholar 

  • Olaoye, O., Ade-Omowaye, B., Preedy, V., Watson, R. & Patel, V. (2011). Composite flours and breads: potential of local crops in developing countries. In Flour and breads and their fortification in health and disease prevention, pp. 183-192. Elsevier Inc.

  • Olsen, K. M., & Schaal, B. A. (2001). Microsatellite variation in cassava and its wild relatives. Further evidence for a southern Amazonian origin of domestication. American Journal of Botany, 88, 131–142.

    Google Scholar 

  • Oluwole, O., Onabolu, A., & Sowunmi, A. (2002). Exposure to cyanide following a meal of cassava food. Toxicology Letters, 135, 19–23.

    CAS  Google Scholar 

  • Omodamiro, R., Iwe, M., & Ukpabi, U. (2007). Pasting and functional properties of lafun and starch processed from some improved cassava genotypes in Nigeria. Nigeria Food Journal, 25, 122–126.

    CAS  Google Scholar 

  • Onyimonyi, A. (2002). Nutritional evaluation of cassava (Manihot tillisisma pohl) peel and bambara (Voandzeia subterranean thouars) waste in pig diets. A Ph. D Dissertation Presented to the Department of Animal Science, University of Nigeria, Nsukka.

  • Opara, U.L. (1999). Cassava storage. CIGR Handbook of Agricultural Engineering. Engineering. St Joseph, MI, American Society of Agricultural Engineers. IV.

  • Opara, U.L. (2009). Postharvest technology of root and tuber crops. In: R. Dris, R. Niskanen & S. M. Jain (Eds.), Crop management and postharvest handling of horticultural products (pp. 382-406). Science publishers Inc.

  • Opara, U. L. (2013). Perspective: the evolving dimensions and perspectives on food security—what are the implications for postharvest technology research, policy and practice? International Journal of Postharvest Technology and Innovation, 3, 324–332.

    Google Scholar 

  • Opara, U. L., & Mditshwa, A. (2013). A review on the role of packaging in securing food system: adding value to food products and reducing losses and waste. African Journal of Agricultural, 8, 2621–2630.

    Google Scholar 

  • Oyewole, O. & Sanni, L. (1995). Constraints in traditional cassava processing—the case of fufu production. In T. Agbor-Egbe, A. Brauman, T. Griffon & S. Treche (Eds.), Cassava Food Processing (pp. 523-529). France, ORSTOM.

  • Pandey, A., Soccol, C. R., Nigam, P., Soccol, V. T., Vandenberghe, L. P., & Mohan, R. (2000). Biotechnological potential of agro-industrial residues. In: cassava bagasse. Bioresource Technology, 74, 81–87.

    CAS  Google Scholar 

  • Raemakers, K., Schreuder, M., Suurs, L., Furrer-Verhorst, H., Vincken, J.-P., De Vetten, N., Jacobsen, E., & Visser, R. G. (2005). Improved cassava starch by antisense inhibition of granule-bound starch synthase. Molecular Breeding, 16, 163–172.

    CAS  Google Scholar 

  • Raji, A., Ladeinde, O., & Dixon, A. (2008). Screening landraces for additional sources of field resistance to cassava mosaic disease and green mite for integration into the cassava improvement program. Journal of Integrative Plant Biology, 50, 311–318.

    Google Scholar 

  • Rawel, H., & Kroll, J. (2003). The importance of cassava (Manihot esculenta Crantz) as the main staple food in tropical countries. Deutsche Lebensmittel-Rundschau, 99, 102–108.

    CAS  Google Scholar 

  • Reilly, K., Góomez-Váasquez, R., Buschmann, H., Tohme, J., & Beeching, J. R. (2004). Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Molecular Biology, 56, 625–641.

    CAS  Google Scholar 

  • Rickard, J. E., & Coursey, D. G. (1981). Cassava storage, part 1: storage of fresh cassava roots. Tropical Science, 23, 1–32.

    Google Scholar 

  • Rijssen, F. W. J., Morris, E. J., & Eloff, J. N. (2013). Food safety: importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz). Journal of Agricultural and Food Chemistry, 61, 8333–8339.

    Google Scholar 

  • Robertson, G.L. (2012). Food packaging: In: Principles and Practice. CRC press.

  • Rodriguez-Amaya, D.B., Nutti, M.R. & Viana De Carvalho, J.L. (2011). Carotenoids of sweet potato, cassava, and maize and their use in bread and flour fortification. In: Flour and Breads and their Fortification in Health and Disease Prevention (pp. 301-311). Elsevier Inc.

  • Salcedo, A., Del Valle, A., Sanchez, B., Ocasio, V., Ortiz, A., Marquez, P., & Siritunga, D. (2010). Comparative evaluation of physiological post-harvest root deterioration of 25 cassava (Manihot esculenta) accessions: visual vs. hydroxycoumarins fluorescent accumulation analysis. African Journal of Agricultural Research, 5, 3138–3144.

    Google Scholar 

  • Sánchez, T., Chávez, A. L., Ceballos, H., Rodriguez-Amaya, D. B., Nestel, P., & Ishitani, M. (2006). Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. Journal of the Science of Food and Agriculture, 86, 634–639.

    Google Scholar 

  • Sánchez, T., Dufour, D., Moreno, I. X., & Ceballos, H. N. (2010). Comparison of pasting and gel stabilities of waxy and normal starches from potato, maize, and rice with those of a novel waxy cassava starch under thermal, chemical, and mechanical stress. Journal of Agricultural and Food Chemistry, 58, 5093–5099.

    Google Scholar 

  • Sanful, R. E., & Darko, S. (2010). Production of cocoyam, cassava and wheat flour composite rock cake. Pakistan Journal of Nutrition, 9, 810–814.

    CAS  Google Scholar 

  • Sayre, R., Beeching, J. R., Cahoon, E. B., Egesi, C., Fauquet, C., Fellman, J., Fregene, M., Gruissem, W., Mallowa, S., & Manary, M. (2011). The biocassava plus program: biofortification of cassava for sub-Saharan Africa. Annual Review of Plant Biology, 62, 251–272.

    CAS  Google Scholar 

  • Selle, P., Ravindran, V., Caldwell, R., & Bryden, W. (2000). Phytate and phytase: consequences for protein utilisation. Nutrition Research Reviews, 13, 255–278.

    CAS  Google Scholar 

  • Shimelis, E. A., Meaza, M., & Rakshit, S. (2006). Physico-chemical properties, pasting behavior and functional characteristics of flours and starches from improved bean (Phaseolus vulgaris L) varieties grown in East Africa. Agricultural Engineering International: CIGR Ejournal, 8, 1–18.

    Google Scholar 

  • Shittu, T., Dixon, A., Awonorin, S., Sanni, L., & Maziya-Dixon, B. (2008). Bread from composite cassava–wheat flour. In: effect of cassava genotype and nitrogen fertilizer on bread quality. Food Research International, 41, 569–578.

    Google Scholar 

  • Siritunga, D., & Sayre, R. (2004). Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Plant Molecular Biology, 56, 661–669.

    CAS  Google Scholar 

  • Srinivas, T. (2007). Industrial demand for cassava starch in India. Starch-Stärke, 59, 477–481.

    CAS  Google Scholar 

  • Sriroth, K., Piyachomkwan, K., Wanlapatit, S., & Oates, C. G. (2000). Cassava starch technology: the Thai experience. Starch‐Stärke, 52, 439–449.

    CAS  Google Scholar 

  • Taiwo, K. A. (2006). Utilization potentials of cassava in Nigeria: the domestic and industrial products. Food Reviews International, 22, 29–42.

    Google Scholar 

  • Taylor, N., Chavarriaga, P., Raemakers, K., Siritunga, D., & Zhang, P. (2004). Development and application of transgenic technologies in cassava. Plant Molecular Biology, 56, 671–688.

    CAS  Google Scholar 

  • Tewe, O. & Lutaladio, N. (2004). Cassava for livestock feed in sub-Saharan Africa. Rome, Italy: FAO.

  • Tsakama, M., Mwangwela, A., Manani, T., & Mahungu, N. (2010). Physicochemical and pasting properties of starch extracted from eleven sweet potato varieties. African Journal of Food Science and Technology, 1, 090–098.

    Google Scholar 

  • Tsav-Wua, J., Inyang, C., & Akpapunam, M. (2004). Microbiological quality of fermented cassava flour ‘kpor umilin’. International Journal of Food Sciences and Nutrition, 55, 317–324.

    CAS  Google Scholar 

  • Ubalua, A. (2007). Cassava wastes: treatment options and value addition alternatives. African Journal of Biotechnology, 6, 2065–2073.

    CAS  Google Scholar 

  • Van Oirschot, Q. E. A., O’brien, G. M., Dufour, D., El‐Sharkawy, M. A., & Mesa, E. (2000). The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. Journal of the Science of Food and Agriculture, 80, 1866–1873.

    Google Scholar 

  • Wani, I. A., Sogi, D. S., Wani, A. A., & Gill, B. S. (2013). Physico-chemical and functional properties of flours from indian kidney bean (Phaseolus vulgaris L.) cultivars. LWT - Food Science and Technology, 53, 278–284.

    CAS  Google Scholar 

  • Westby, A. (2002). Cassava utilization, storage and small-scale processing. In R. J. Hillocks, J. M. Tresh, & A. C. Bellotti (Eds.), Cassava: Biology, Production and Utilization (pp. 281–300). New York, USA: CABI publishing.

    Google Scholar 

  • Wobeto, C., Corrêa, A. D., Abreu, C. M. P. D., Santos, C. D. D., & Pereira, H. V. (2007). Antinutrients in the cassava (Manihot esculenta Crantz) leaf powder at three ages of the plant. Ciência e Tecnologia de Alimentos, 27, 108–112.

    CAS  Google Scholar 

  • Zhao, S. S., Dufour, D., Sánchez, T., Ceballos, H., & Zhang, P. (2011). Development of waxy cassava with different biological and physico‐chemical characteristics of starches for industrial applications. Biotechnology and Bioengineering, 108, 1925–1935.

    CAS  Google Scholar 

  • Zidenga, T., Leyva-Guerrero, E., Moon, H., Siritunga, D., & Sayre, R. (2012). Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiology, 159, 1396–1407.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation. The financial support of the West African Agricultural Productivity Programme (WAAPP) of the Federal Government of Nigeria through the award of scholarship to Mrs. Uchechukwu-Agua is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umezuruike Linus Opara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchechukwu-Agua, A.D., Caleb, O.J. & Opara, U.L. Postharvest Handling and Storage of Fresh Cassava Root and Products: a Review. Food Bioprocess Technol 8, 729–748 (2015). https://doi.org/10.1007/s11947-015-1478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1478-z

Keywords

Navigation