Skip to main content
Log in

Investigation of Grinding and Lapping Surface Damage Evolution of Fused Silica by Inductively Coupled Plasma Etching

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Surface damage has great influence on optical properties, especially the laser-induced damage threshold of optics, and it has become a difficult and basic issue to find suitable methods to efficiently remove the surface damage for improving the surface quality. In this paper, the characteristic evolution of brittle scratch and ground/lapped surface damage during inductively coupled plasma etching (ICPE) process are experimentally investigated on fused silica. Results of damage removal tests show ICPE can efficiently remove brittle scratch and eliminate the lateral and medial cracks. The PV (peak to valley) and RMS (root mean square) values of surface roughness increase with the exposure of lateral and medial cracks, and then gradually decreases with further etching. Finally, the ground and lapped fused silica surfaces with a size of 300 × 300 × 20 mm3 are efficiently processed by ICPE. The power spectral density analysis further demonstrates that the damage can be efficiently removed by ICPE. This study reveals the damage evolution during ICPE process and also provides technical guidance for optimizing the efficient damage removal process to rapidly improve surface quality, precision and fabrication efficiency of fused silica optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

ICPE:

Inductively coupled plasma etching

SSD:

Subsurface damage

MRF:

Magnetorheological finishing

MRR:

Material removal rate

HFE:

Hydrofluoric acid etching

IBF:

Ion beam figuring

References

  1. Shen, N., Bude, J. D., & Carr, C. W. (2014). Model laser damage precursors for high quality optical materials. Optics Express, 22(3), 3393–3404.

    Article  Google Scholar 

  2. Wang, Z., Wu, Y., Dai, Y., & Li, S. (2008). Subsurface damage distribution in the lapping process. Applied Optics, 47(10), 1417–1426.

    Article  Google Scholar 

  3. Menapace, J. A. (2010). Developing magnetorheological finishing (MRF) technology for the manufacture of large-aperture optics in megajoule class laser systems. Office of Scientific and Technical Information Technical Reports 7842 (pp. 78421W–78421W-15).

  4. Bude, J., Miller, P., Baxamusa, S., Shen, N., Laurence, T., Steele, W., et al. (2014). High fluence laser damage precursors and their mitigation in fused silica. Optics Express, 22(5), 5839–5851.

    Article  Google Scholar 

  5. Miller, P. E., Suratwala, T. I., Bude, J. D., Laurence, T. A., Shen, N., Steele, W. A., et al. (2009). Laser damage precursors in fused silica. Proceedings of SPIE, 7504, 75040X.

    Article  Google Scholar 

  6. Menapace, J., Penetrante, B., Golini, D., Slomba, A., Miller, P., Parham, T., et al. (2002). Combined advanced finishing and UV-Laser conditioning for producing UV-damage-resistant fused silica optics. Proceedings of SPIE, 4679, 56–68.

    Article  Google Scholar 

  7. Liu, H., Ye, X., Zhou, X., Huang, J., Wang, F., Zhou, X., et al. (2014). Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process. Optical Materials, 36, 855–860.

    Article  Google Scholar 

  8. Néauport, J., Ambard, C., Cormont, P., Darbois, N., Destribats, J., Luitot, C., et al. (2009). Subsurface damage measurement of ground fused silica parts by HF etching techniques. Optics Express, 17(22), 20448–20456.

    Article  Google Scholar 

  9. Xu, M., Dai, Y., Zhou, L., Shi, F., Wan, W., Xie, X., et al. (2016). Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering. Optical Materials, 58, 151–157.

    Article  Google Scholar 

  10. Shi, F., Zhong, Y., Dai, Y., Peng, X., Xu, M., & Sui, T. (2016). Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica. Optics Express, 24(18), 20842–20854.

    Article  Google Scholar 

  11. Kamimura, T., Akamatsu, S., Yamamoto, M., Yamato, I., Shiba, H., Motokoshi, S., et al. (2003). Enhancement of surface-damage resistance by removing a subsurface damage in fused silica. Proceedings of SPIE, 5273, 244–249.

    Article  Google Scholar 

  12. Xu, M., Shi, F., Zhou, L., Dai, Y., Peng, X., & Liao, W. (2017). Investigation of laser-induced damage threshold improvement mechanism during ion beam sputtering of fused silica. Optics Express, 25(23), 29260–29271.

    Article  Google Scholar 

  13. Fanara, C., Shore, P., Nicholls, J. R., Lyford, N., Kelley, J., Carr, J., et al. (2006). A new reactive atom plasma technology (RAPT) For precision machining: the etching of ULE surfaces. Advanced Engineering Materials, 8(10), 933–939.

    Article  Google Scholar 

  14. Jourdain, R., Castelli, M., Shore, P., Sommer, P., & Proscia, D. (2013). Reactive atom plasma (RAP) figuring machine for meter class optical surfaces. Precision Engineering, 7(6), 665–673.

    Google Scholar 

  15. Shi, B., Dai, Y., Xie, X., Li, S., & Zhou, L. (2016). Arc-enhanced plasma machining technology for high efficiency machining of silicon carbide. Plasma Chemistry and Plasma Processing, 36(3), 1–10.

    Google Scholar 

  16. Arnold, T., Böhm, G., Fechner, R., Meister, J., Frost, F., Hänsel, T., et al. (2010). Ultra-precision surface finishing by ion beam and plasma jet techniques-status and outlook. Nuclear Instruments and Methods in Physics Research, 616(2–3), 147–156.

    Article  Google Scholar 

  17. Meister, J., & Arnold, T. (2011). New process simulation procedure for high-rate plasma jet machining. Plasma Chemistry and Plasma Processing, 31(1), 91–107.

    Article  Google Scholar 

  18. Arnold, T., & Böhm, G. (2012). Application of atmospheric plasma jet machining (PJM) for effective surface figuring of SiC. Precision Engineering, 36(4), 546–553.

    Article  Google Scholar 

  19. Arnold, T., Böhm, G., & Paetzelt, H. (2016). Nonconventional ultra-precision manufacturing of ULE mirror surfaces using atmospheric reactive plasma jets. Proceedings of SPIE, 9912, 99123N.

    Article  Google Scholar 

  20. Castelli, M., Jourdain, R., Morantz, P., & Shore, P. (2012). Rapid optical surface figuring using reactive atom plasma. Precision Engineering, 36(3), 467–476.

    Article  Google Scholar 

  21. Zhang, J., Li, B., Wang, B., & Dong, S. (2013). Analysis on formation mechanism of ultra-smooth surfaces in atmospheric pressure plasma polishing. International Journal of Advanced Manufacturing Technology, 65(9–12), 1239–1245.

    Article  Google Scholar 

  22. Li, S., Wang, Z., & Wu, Y. (2008). Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes. Journal of Materials Processing Technology, 205(1), 34–41.

    Article  Google Scholar 

  23. Ren, K., Luo, X., Zheng, L., Bai, Y., Li, L., Hu, H., et al. (2014). Belt-MRF for large aperture mirrors. Optics Express, 22(16), 19262–19276.

    Article  Google Scholar 

  24. Cheng, H. B., Feng, Z. J., & Wang, Y. W. (2005). Surface roughness and material-removal rate with magnetorheological finishing without subsurface damage of the surface. Journal of Optical Technology, 72(11), 865–871.

    Article  Google Scholar 

  25. Chen, H., Zhou, L., Xie, X., Shi, B., & Xiong, H. (2016). Rapidly removing grinding damage layer on fused silica by inductively coupled plasma processing. Proceedings of SPIE, 9683, 96830B.

    Google Scholar 

  26. Dai, Z., Xie, X., Chen, H., & Zhou, L. (2018). Non-linear compensated dwell time for efficient fused silica surface figuring using inductively coupled plasma. Plasma Chemistry and Plasma Processing, 38(2), 443–459.

    Article  Google Scholar 

  27. Xin, Q., Li, N., Wang, J., Wang, B., Li, G., Ding, F., et al. (2015). Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma. Applied Surface Science, 341, 142–148.

    Article  Google Scholar 

  28. Xin, Q., Su, X., & Wang, B. (2016). Modeling study on the surface morphology evolution during removing the optics surface/subsurface damage using atmospheric pressure plasma processing. Applied Surface Science, 382, 260–267.

    Article  Google Scholar 

  29. Takino, H., Yamamura, K., Sano, Y., & Mori, Y. (2010). Removal characteristics of plasma chemical vaporization machining with a pipe electrode for optical fabrication. Applied Optics, 49(23), 4434.

    Article  Google Scholar 

  30. Oh, C., Kang, M., & Hahn, J. W. (2015). Accurate measurement of atomic chlorine radical density in process plasma with spatially resolvable optical emission spectrometer. International Journal of Precision Engineering and Manufacturing, 16(9), 1919–1924.

    Article  Google Scholar 

  31. Sung, S., Kim, C. H., Lee, J., Jung, J. Y., Jeong, J., Choi, J. H., et al. (2014). Advanced metal lift-offs and nanoimprint for plasmonic metal patterns. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 25–30.

    Article  Google Scholar 

  32. Lee, H., Chung, M., Ahn, H. G., Kim, S. J., Park, Y. K., & Jung, S. C. (2015). Effect of the surfactant on size of nickel nanoparticles generated by liquid-phase plasma method. International Journal of Precision Engineering and Manufacturing, 16(7), 1305–1310.

    Article  Google Scholar 

  33. Lian, Y. S., Chen, H. F., & Mu, C. L. (2019). Performance of microtextured tools fabricated by inductively coupled plasma etching in dry cutting tests on medium carbon steel workpieces. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(2), 175–188.

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by Natural Science Foundation of China (51835013, U1801259), Natural Science Foundation of Hunan Province (2017JJ1004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanyong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Chen, S., Xie, X. et al. Investigation of Grinding and Lapping Surface Damage Evolution of Fused Silica by Inductively Coupled Plasma Etching. Int. J. Precis. Eng. Manuf. 20, 1311–1323 (2019). https://doi.org/10.1007/s12541-019-00142-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00142-9

Keywords

Navigation