Skip to main content
Log in

New Process Simulation Procedure for High-Rate Plasma Jet Machining

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Surface figuring using chemically reactive plasma jet machining (PJM) is a promising non-conventional technology for deterministic ultra-precision machining of optical components. Based on chemical reactions between plasma generated radicals and the surface atoms this technology is capable to fabricate complex shaped free form surfaces. Since the material removal rate during PJM depends strongly on the surface temperature which itself is influenced by the jet heat flux to the surface, the arising nonlinear effects on the etch result have to be regarded. Conventionally applied dwell time calculation algorithms do not consider those effects leading to significant machining errors in some cases. In order to improve the machining procedure with respect to deterministic material removal yielding predictable results a process simulation model has been developed. This model considers spatio-temporal variations of surface temperature and temperature dependent material removal and is able to predict the final workpiece topography after machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kim MC, Yang SH, Boo J-H, Han JG (2003) Surf Coat Tech 174–175:839–844

    Article  Google Scholar 

  2. Lee ES, Park HI, Baik HK, Lee S-J, Song KM, Hwang MK, Huh CS (2003) Surf Coat Tech 171:307–311

    Article  Google Scholar 

  3. Rupf S, Lehmann A, Hannig M, Schäfer B, Schubert A, Feldmann U, Schindler A (2010) J Med Microbiol 59:206–212

    Article  Google Scholar 

  4. Babayan SE, Jeong JY, Tu VJ, Park J, Selwyn GS, Hicks RF (1998) Plasma Sources Sci Technol 7:286–288

    Article  ADS  Google Scholar 

  5. Fanara C, Shore Nicholls JR, Lyford N, Kelley J, Carr J, Sommer P (2006) Adv Eng Mater 8:933–939

    Article  Google Scholar 

  6. Arnold T, Böhm G, Schindler A (2001) J Vac Sci Technol A 19:2586

    Article  ADS  Google Scholar 

  7. Arnold T, Böhm G, Fechner R, Meister J, Nickel A, Frost F, Hänsel T, Schindler A (2010) Nucl Instrum Meth A 616:147–156

    Article  ADS  Google Scholar 

  8. Böhm G, Frank W, Schindler A, Nickel A, Thomas H-J, Bigl F, Weiser M (1999) Precision Science and Technology for Perfect Surfaces, eds. Furukawa Y, Mori Y & Kataoka T, The Japan Society for Precision Engineering, Tokyo 231–236

  9. Coburn JW, Winters HF (1979) J Vac Sci Technol 16:391–403

    Article  ADS  Google Scholar 

  10. Coburn JW (1982) Plasma Chem Plasma P 2:1

    Article  ADS  Google Scholar 

  11. Winters HF, Coburn JW, Chuang TJ (1983) J Vac Sci Technol B 1:469

    Article  Google Scholar 

  12. Ho P, Johannes JE, Buss RJ (2001) J Vac Sci Technol A 19:2344–2367

    Article  ADS  Google Scholar 

  13. Edelson D, Flamm DL (1984) J Appl Phys 56:1522–1531

    Article  ADS  Google Scholar 

  14. Haverlag M, Kersten H, Kroesen GMW, de Hoog FJ, Rutscher A (1991) Contrib Plasma Phys 31:279–282

    Article  ADS  Google Scholar 

  15. Deutsch H, Kersten H, Rutscher A (1989) Contrib Plasma Phys 29:263–284

    Article  ADS  Google Scholar 

  16. Flamm DL, Mogab CJ, Sklaver ER (1979) J Appl Phys 50:6211–6213

    Article  ADS  Google Scholar 

  17. Gogolides E, Vauvert P, Kokkoris G, Turban G, Boudouvis AG (2000) J Appl Phys 88:5570–5584

    Article  ADS  Google Scholar 

  18. Ikegami N, Ozawa N, Miyakawa Y, Konishi M, Kanamori J (1990) Jpn J Appl Phys 29:2236–2242

    Article  ADS  Google Scholar 

  19. Drueding TW, Bifano TG, Fawcett SC (1995) Precis Eng 17:10–21

    Article  Google Scholar 

  20. Hänsel T, Frost F, Nickel A, Schindler A (2007) Vakuum Forschung Praxis 19:24

    Article  Google Scholar 

  21. Gold R (1964) Mathematics and computer research and development rep. ANL-6984

  22. Richardson WH (1972) J Opt Soc Am A 62:55–59

    Article  ADS  Google Scholar 

  23. Hänsel T, Nickel A, Schindler A (2008) Optical fabrication and testing, OSA Technical Digest (CD): paper JWD6

  24. Heraeus Quarzglas GmbH & Co. KG www.heraeus-quarzglas.com

  25. A heat transfer textbook Lienhard IV JH, Lienhard V JH (2008) Phlogiston Press, Cambridge, 3rd edition

  26. Meister J, Böhm G, Eichentopf I-M, Arnold T (2009) Plasma Process Polym 6:S209–S213

    Article  Google Scholar 

  27. Masquère M, Freton P, Gonzalez JJ (2007) J Phys D Appl Phys 40:432–446

    Article  ADS  Google Scholar 

  28. Lefebvre A, Vieville P, Lipinski P, Lescalier C (2006) Int J Mach Tools Manuf 46:1716–1726

    Article  Google Scholar 

  29. Bianco N, Manca O, Nardini S, Tamburrino S (2008) Proc COMSOL Conf 2008 Hannover

  30. Comsol AB, Comsol Multiphysics® http://www.comsol.com

  31. Remie MJ, Särner G, Cremers MFG, Omrane A, Schreel KRAM, Aldén M, de Goey MPH (2008) Int J Heat Mass Tran 51:3144–3152

    Article  MATH  Google Scholar 

  32. Beitelmal H, Saad MA, Patel CD (2000) Int Heat Fluid Flow 51:156–163

    Article  Google Scholar 

  33. Kersten H, Deutsch H, Steffen H, Kroesen GMW, Hippler R (2001) Vacuum 63:385–431

    Article  Google Scholar 

  34. Kersten H, Rohde D, Steffen H, Deutsch H, Hippler R, Swinkels GHPM, Kroesen GMW (2001) Appl Phys A 72:531–540

    Article  ADS  Google Scholar 

  35. Dussart R, Thomann AL, Pichon LE, Bedra L, Semmar N, Lefaucheux P, Mathias J, Tessier Y (2008) Appl Phys Lett 93:131502–131503

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the German Ministry of Education and Science within the framework of the InnoProfile program 03IP706 “Ultra precision machining using atomic particle beams”. We thank Mr. Andreas Nickel for providing the dwell time calculation software DTCALC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Meister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meister, J., Arnold, T. New Process Simulation Procedure for High-Rate Plasma Jet Machining. Plasma Chem Plasma Process 31, 91–107 (2011). https://doi.org/10.1007/s11090-010-9267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9267-y

Keywords

Navigation