Skip to main content
Log in

Non-linear Compensated Dwell Time for Efficient Fused Silica Surface Figuring Using Inductively Coupled Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Atmospheric plasma etching has been increasingly applied in the fabrication of optical elements for high efficiency and near-zero damage to optical surfaces. However, the non-linearity of material removal rate is inevitable because of the thermal effect of inductively coupled plasma (ICP) etching for fused silica. To apply ICP to figure fused silica surface, the time-varying non-linearity between material removal rate and dwell time is analyzed. An experimental model of removal function is established considering the time-varying non-linearity. According to this model, an algorithm based on nested pulsed iterative method is proposed for calculating and compensating this time-varying non-linearity by varying the dwell time. Simulation results show that this algorithm can calculate and adjust the dwell time accurately and remove surface errors with rapid convergence. Surface figuring experiments were set up on the fused silica planar work-pieces with a size of 100 mm (width) × 100 mm (length) × 10 mm (thickness). With the compensated dwell time, the surface error converges rapidly from 4.556 λ PV (peak-to-valley) to 0.839 λ PV within 13.2 min in one iterative figuring. The power spectral density analysis indicates that the spatial frequency errors between 0.01 and 0.04 mm−1 are smoothed efficiently, and the spatial frequency errors between 0.04 and 0.972 mm−1 are also corrected. Experimental results demonstrate that the ICP surface figuring can achieve high convergence for surface error reduction using the compensated dwell time. Therefore, the ICP surface figuring can greatly improve surface quality and machining efficiency for fused silica optical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Li N, Wang B, Jin H (2014) Harbin Inst Technol 21(5):124–128

    CAS  Google Scholar 

  2. Wang Z, Wu Y, Dai Y (2007) Aviat Precis Manuf Technol 43(5):1–5

    Google Scholar 

  3. Nie X, Li S, Dai Y, Song C (2013) Proc SPIE Int Soc Opt Eng 8786(22):11306–11312

    Google Scholar 

  4. Shen J, Liu S, Yi K, He H, Shao J, Fan Z (2005) Optik Int J Light Electron Opt 116(6):288–294

    Article  Google Scholar 

  5. Wang Y, Hang L, Hu M (2008) Surf Technol 37(1):51–53

    Google Scholar 

  6. Meister J, Arnold T (2011) Plasma Chem Plasma Process 31:91–107

    Article  CAS  Google Scholar 

  7. Mori Y, Yamamura K, Sano Y (2000) Rev Sci Instrum 71(12):4620–4626

    Article  CAS  Google Scholar 

  8. Takino H, Yamamura K, Sano Y, Mori Y (2010) Appl Opt 49:4434–4440

    Article  Google Scholar 

  9. Eichentopf I-M, Böhm G, Meister J, Arnold T (2010) Plasma Process Polym 6(S10):S204–S208

    Google Scholar 

  10. Arnold T, Böhm G, Fechner R, Meister J, Nickel A, Frost F, Hansel T, Schindler A (2010) Nucl Instrum Methods Phys Res A 616:147–156

    Article  CAS  Google Scholar 

  11. Arnold T, Böhm G (2012) Precis Eng 36(4):546–553

    Article  Google Scholar 

  12. Eichentopf I-M, Böhm G, Arnold T (2011) Surf Coat Technol 205(205):S430–S434

    Article  CAS  Google Scholar 

  13. Fanara C, Shore P, Nicholls J-R, Lyford N, Sommer P, Fiske P (2006) SPIE Astron Telesc Instrum Int Soc Opt Photonics 10:933–939

    Google Scholar 

  14. Jourdain R, Castelli M, Shore P, Sommer P, Proscia D (2013) Prod Eng Res Devel 7:665–673

    Article  Google Scholar 

  15. Zhang J, Wang B, Dong S (2008) Int J Precis Eng Manuf 9(2):39–43

    Google Scholar 

  16. Jia G, Li B, Zhang J (2016) Mater Sci Forum 878:83–88

    Article  Google Scholar 

  17. Shi B, Dai Y, Xie X, Li S, Zhou L (2016) Plasma Chem Plasma Process 36(3):1–10

    Google Scholar 

  18. Shi B, Xie X, Dai Y, Liao C (2014) Proc SPIE 9281:928104

    Article  Google Scholar 

  19. Greenfield S, Jones I (1964) Analyst 89(1064):713–720

    Article  CAS  Google Scholar 

  20. Castelli M, Jourdain R, Morantz P, Shore P (2012) Proc SPIE Int Soc Opt Eng 8450:34

    Google Scholar 

  21. Wendt R, Fassel V (1965) Anal Chem 37(7):920–922

    Article  CAS  Google Scholar 

  22. Castelli M, Jourdain R, Morantz P, Shore P (2012) Precis Eng 36(3):467–476

    Article  Google Scholar 

  23. Liao W, Dai Y, Xie X (2014) Opt Eng 53(9):095101

    Article  Google Scholar 

  24. Arnold T, Böhm G, Paetzelt H (2016) Nonconventional ultra-precision manufacturing of ULE mirror surfaces using atmospheric reactive plasma jets. In: SPIE astronomical telescopes and instrumentation, p 99123N

Download references

Acknowledgements

This research work was supported by the project “Program for New Century Excellent Talents in University (NCET) (No. 130165)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuocai Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Xie, X., Chen, H. et al. Non-linear Compensated Dwell Time for Efficient Fused Silica Surface Figuring Using Inductively Coupled Plasma. Plasma Chem Plasma Process 38, 443–459 (2018). https://doi.org/10.1007/s11090-018-9873-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9873-7

Keywords

Navigation