Skip to main content
Log in

The latest preload technology of machine tool spindles: A review

  • Review Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Recently, the studies of machine tool spindles for high-speed and high-precision have been actively performed to produce high-valueadded products. The spindle has a great influence on the performance of the machine tool. In particular, the preload method and the amount of preload applied to the bearings inside the spindle are properly determined to maintain high performance of the spindle. The bearing preload refers to the internal load by interference of the axial or radial direction within a bearing, and elastic deformation between the rolling elements and the raceway can arise. The main purpose of the bearing preload is to improve the machining accuracy, rigidity and bearing life. At low speeds, a heavy preload should be applied to improve the machining accuracy by increasing the rigidity due to heavy cutting. In contrast, at high speeds, a light preload should be applied to light cutting. Therefore, a variable preload technology which depends on the operating conditions should be applied. In this paper, a summary related to preload technology is provided and an analysis of patent trends related to variable preload technology is conducted. Moreover, a literature review of new conceptual variable preload technology is carried out, and non-uniform preload technology is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korea Technology and Information Promotion Agency for SMEs, “Smart Factory (Technology Roadmap for SME),” http://smroadmap.smtech.go.kr/0201/view/m_code/A120/s_code/A06/idx/1669 (Accessed 17 OCT 2017)

  2. Chu, W.-S., Kim, M.-S., Jang, K.-H., Song, J.-H., Rodrigue, H., et al., “From Design for Manufacturing (DFM) to Manufacturing for Design (MFD) via Hybrid Manufacturing and Smart Factory: A Review and Perspective of Paradigm Shift,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 209–222, 2016.

    Article  Google Scholar 

  3. Kang, H.-S., Lee, J.-Y., Choi, S.-S., Kim, H., Park, J. -H., et al., “Smart Manufacturing: Past Research, Present Findings, and Future Directions,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 111–128, 2016.

    Article  Google Scholar 

  4. Campatelli, G., Scippa, A., Lorenzini, L., and Sato, R., “Optimal Workpiece Orientation to Reduce the Energy Consumption of a Milling Process,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 1, pp. 5–13, 2015.

    Article  Google Scholar 

  5. Soubihia, D. F., Jabbour, C. J. C., and De Sousa Jabbour, A. B. L., “Green Manufacturing: Relationship between Adoption of Green Operational Practices and Green Performance of Brazilian ISO 9001-Certified Firms,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 1, pp. 95–98, 2015.

    Article  Google Scholar 

  6. Lee, C.-M., Woo, W.-S., Baek, J.-T., and Kim, E.-J., “Laser and ARC Manufacturing Processes: A Review,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 7, pp. 973–985, 2016.

    Article  Google Scholar 

  7. Lee, C.-M., Woo, W.-S., Kim, D.-H., Oh, W.-J., and Oh, N.-S., “Laser-Assisted Hybrid Processes: A Review,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 2, pp. 257–267, 2016.

    Article  Google Scholar 

  8. Matsumoto, M., Yang, S., Martinsen, K., and Kainuma, Y., “Trends and Research Challenges in Remanufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 129–142, 2016.

    Article  Google Scholar 

  9. Korea Technology and Information Promotion Agency for SMEs, “Precision /Micromechanical Systems (Technology Roadmap for SME),” http://smroadmap.smtech.go.kr/0201/view/m_code/A310/s_code/A01/idx/1806 (Accessed 17 OCT 2017)

  10. Choi, S. S., Kim, B. H., and Noh, S. D., “A Diagnosis and Evaluation Method for Strategic Planning and Systematic Design of a Virtual Factory in Smart Manufacturing Systems,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 6, pp. 1107–1115, 2015.

    Article  Google Scholar 

  11. Ahn, D.-G., “Direct Metal Additive Manufacturing Processes and their Sustainable Applications for Green Technology: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 4, pp. 381–395, 2016.

    Article  Google Scholar 

  12. Kang, S. M., “Bioinspired Design and Fabrication of Green-Environmental Dry Adhesive with Robust Wide-Tip Shape,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 189–192, 2016.

    Article  Google Scholar 

  13. Ko, H., Moon, S. K., and Hwang, J., “Design for Additive Manufacturing in Customized Products,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2369–2375, 2015.

    Article  Google Scholar 

  14. Cao, H., Zhang, X., and Chen, X., “The Concept and Progress of Intelligent Spindles: A Review,” International Journal of Machine Tools & Manufacture, Vol. 112, pp. 21–52, 2017.

    Article  Google Scholar 

  15. Fan, W., Lee, C.-H., and Chen, J.-H., “Real-Time Repairable Interpolation Scheme for CNC Tool Path Processing,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 12, pp. 1673–1684, 2016.

    Article  Google Scholar 

  16. Park, D.-K., Lee, G.-I., Gao, J.-C., and Kim, J.-Y., “Research on the Design of the Ultra-High-Precision Positioning Control Error Compensation,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 10, pp. 1351–1358, 2016.

    Article  Google Scholar 

  17. Ullah, S. M. S., Muhammad, I., and Ko, T. J., “Optimal Strategy to Deal with Decision Making Problems in Machine Tools Remanufacturing,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 19–26, 2016.

    Article  Google Scholar 

  18. Hong, Y. S., Yoon, H. S., Moon, J. S., Cho, Y. M., and Ahn, S. H., “Tool-Wear Monitoring during Micro-End Milling using Wavelet Packet Transform and Fisher’s Linear Discriminant,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 7, pp. 845–855, 2016.

    Article  Google Scholar 

  19. Lee, C.-M., Kim, D.-H., Baek, J.-T., and Kim, E.-J., “Laser Assisted Milling Device: A Review,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 199–208, 2016.

    Article  Google Scholar 

  20. Park, H.-S., Nguyen, T.-T., and Dang, X.-P., “Energy-Efficient Optimization of Forging Process considering the Manufacturing History,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 2, pp. 147–154, 2016.

    Article  Google Scholar 

  21. Zhao, Y. S., Xu, J. J., Cai, L. G., Shi, W. M., Liu, Z. F., and Cheng, Q., “Contact Stiffness Determination of High-Speed Double-Locking Toolholder-Spindle Joint based on a Macro-Micro Scale Hybrid Method,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 6, pp. 741–753, 2016.

    Article  Google Scholar 

  22. Yang, L., Chu, C. H., Fu, Y. C., Xu, J. H., and Liu, Y. T., “CFRP Grinding Wheels for High Speed and Ultra-High Speed Grinding: A Review of Current Technologies and Research Strategies,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 12, pp. 2599–2606, 2015.

    Article  Google Scholar 

  23. Hwang, Y. K., “A Study on the Variable Preload Technology for High Speed and High Efficiency Machine Tool Spindle,” Ph.D. Thesis, Changwon National University, 2010.

    Google Scholar 

  24. Kim, D. H., “A Study on the Variable Preload Device Development of Machine Tool Spindle Using an Eccentric Mass and Giant Magnetostrictive Materials,” M.Sc. Thesis, Changwon National University, 2012.

    Google Scholar 

  25. Hong, S. W. and Tong, V. C., “Rolling-Element Bearing Modeling: A Review,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 12, pp. 1729–1749, 2016.

    Article  Google Scholar 

  26. Yang, Z. H., Li, B. T., and Yu, T. X., “Influence of Structural Parameters and Tolerance on Stiffness of High-Speed Ball Bearings,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 11, pp. 1493–1501, 2016.

    Article  Google Scholar 

  27. Tong, V. C. and Hong, S. W., “Characteristics of Tapered Roller Bearing with Geometric Error,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 13, pp. 2709–2716, 2015.

    Article  Google Scholar 

  28. Zhang, J. H., Fang, B., Zhu, Y. S., and Hong, J., “A Comparative Study and Stiffness Analysis of Angular Contact Ball Bearings under Different Preload Mechanisms,” Mechanism and Machine Theory, Vol. 115, pp. 1–17, 2017.

    Article  Google Scholar 

  29. Xu, T., Xu, G. H., Zhang, Q., Hua, C., Tan, H. H., Zhang, S. C., and Luo, A., “A Preload Analytical Method for Ball Bearings Utilizing Bearing Skidding Criterion,” Tribology International, Vol. 67, pp. 44–50, 2013.

    Article  Google Scholar 

  30. Ozturk, E., Kumar, U., Turner, S., and Schmitz, T., “Investigation of Spindle Bearing Preload on Dynamics and Stability Limit in Milling,” CIRP Annals -Manufacturing Technology, Vol. 61, pp. 343–346, 2012.

    Article  Google Scholar 

  31. Jiang, S. Y. and Mao, H. B., “Investigation of Variable Optimum Preload for a Machine Tool Spindle,” International Journal of Machine Tools & Manufacture, Vol. 50, pp. 19–28, 2010.

    Article  Google Scholar 

  32. Dong, Y. F., Zhou, Z., and Liu, M. Y., “Bearing Preload Optimization for Machine Tool Spindle by the Influencing Multiple Parameters on the Bearing Performance,” Advances in Mechanical Engineering, Vol. 9, No. 2, pp. 1–9, 2017.

    Article  Google Scholar 

  33. Spiewak, S. A. and Nickel, T., “Vibration Based Preload Estimation in Machine Tool Spindles,” International Journal of Machine Tools and Manufacture, Vol. 41, No. 4, pp. 567–588, 2001.

    Article  Google Scholar 

  34. Kim, K. and Kim, S. S., “Effect of Preload on Running Accuracy of Spindle,” International Journal of Machine Tools and Manufacture, Vol. 29, No. 1, pp. 99–105, 1989.

    Article  Google Scholar 

  35. Rabreau, C., Noel, D., Le Loch, S., Ritou, M., and Furet, B., “Phenomenological Model of Preloaded Spindle Behavior at High Speed,” International Journal of Advanced Manufacturing Technology, Vol. 90, Nos. 9-12, pp. 3643–3654, 2017.

    Article  Google Scholar 

  36. Hwang, Y. K. and Lee, C. M., “A Review on the Preload Technology of the Rolling Bearing for the Spindle of Machine Tools,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 3, pp. 497–504, 2010.

    Article  Google Scholar 

  37. Hwang, Y. K. and Lee, C. M., “Development of a Simple Determination Method of Variable Preloads for High Speed Spindles in Machine Tools,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 1, pp. 127–134, 2015.

    Article  MathSciNet  Google Scholar 

  38. Baz, A. and Poh, S., “Performance of an Active Control System with Piezoelectric Actuators,” Journal of Sound and Vibration, Vol. 126, No. 2, pp. 327–343, 1988.

    Article  Google Scholar 

  39. Patil, C. S., Roy, S., and Jagtap, K. R., “Damage Detection in Frame Structure Using Piezoelectric Actuator,” Materials Today: Proceedings, Vol. 4, pp. 687–692, 2017.

    Article  Google Scholar 

  40. Sauvet, B., Laliberte, T., and Gosselin, C., “Design, Analysis and Experimental Validation of an Ungrounded Haptic Interface Using a Piezoelectric Actuator,” Mechatronics, Vol. 45, pp. 100–109, 2017.

    Article  Google Scholar 

  41. Chen, X. K., Su, C. Y., Li, Z., and Yang, F., “Design of Implementable Adaptive Control for Micro/Nano Positioning System Driven by Piezoelectric Actuator,” IEEE Transactions on Industrial Electronics, Vol. 63, No. 10, pp. 6471–6481, 2016.

    Article  Google Scholar 

  42. Kim, D. H., Chee, H. S., and Lee, C. M., “The Technical Trend and Future Development Direction of Machine Tools Automatic Tool Changer by Patent Mapping,” J. Korean Soc. Precis. Eng., Vol. 30, No. 3, pp. 266–270, 2013.

    Article  Google Scholar 

  43. Park, D. K., Choi, J. Y., Choi, C. H., and Lee, C. M., “The Technical Trend and Future Development Direction of Machine Tools Spindle System by Patent Analysis,” J. Korean Soc. Precis. Eng., Vol. 29, No. 5, pp. 500–505, 2012.

    Article  Google Scholar 

  44. Kim, J. S., Lee, W. J., and Park, H. W., “The State of the Art in the Electron Beam Manufacturing Processes,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 11, pp. 1575–1585, 2016.

    Article  Google Scholar 

  45. Nahian, S. A., Truong, D. Q., Chowdhury, P., Das, D., and Ahn, K. K., “Modeling and Fault Tolerant Control of an Electro-Hydraulic Actuator,” Int. J. Precis. Eng. Manuf., Vol. 17, No. 10, pp. 1285–1297, 2016.

    Article  Google Scholar 

  46. Park, H.-C. and Kim, J.-H., “Electromagnetic Induction Energy Harvester for High-Speed Railroad Applications,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 1, pp. 41–48, 2016.

    Article  Google Scholar 

  47. Kim, Y.-S., Lee, K. W., Cho, Y. H., Guo, Z., Koo, J. M., and Seok, C.-S., “Fatigue Safety Evaluation of Newly Developed Contact Wire for Eco-Friendly High Speed Electric Railway System Considering Wear,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 4, pp. 353–358, 2016.

    Article  Google Scholar 

  48. Usharan, R., Uma, G., and Umapathy, M., “Design of High Output Broadband Piezoelectric Energy Harvester with Double Tapered Cavity Beam,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 4, pp. 343–351, 2016.

    Article  Google Scholar 

  49. Jeong, S. K., Choi, H. S., Bae, J. H., You, S. S., Kang, H. S., Lee, S. J., Kim, J. Y., Kim, D. H., and Lee, Y. K., “Design and Control of High Speed Unmanned Underwater Glider,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 3, No. 3, pp. 273–279, 2016.

    Article  Google Scholar 

  50. Pham, M. H. and Ahn, H. J., “Horizontal Active Vibration Isolator (HAVI) using Electromagnetic Planar Actuator (EPA),” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 269–274, 2015.

    Article  Google Scholar 

  51. Hwang, Y. K. and Lee, C. M., “Development of Automatic Variable Preload Device for Spindle Bearing by Using Centrifugal Force,” International Journal of Machine Tools and Manufacture, Vol. 49, pp. 781–787, 2009.

    Article  Google Scholar 

  52. Razban, M. and Movahhedy, M. R., “A Speed-Dependent Variable Preload System for High Speed Spindles,” Precision Engineering, Vol. 40, pp. 182–188, 2015.

    Article  Google Scholar 

  53. Hwang, Y. K. and Lee, C. M., “Development of a Newly Structured Variable Preload Control Device for a Spindle Rolling Bearing by using an Electromagnet,” International Journal of Machine Tools and Manufacture, Vol. 50, pp. 253–259, 2010.

    Article  Google Scholar 

  54. Hwang, Y. K., Park, I. H., Paik, K. S., and Lee, C. M., “Development of a Variable Preload Spindle by Using an Electromagnetic Actuator,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 2, pp. 201–207, 2014.

    Article  Google Scholar 

  55. Choi, C. H., Kim, D. H., and Lee, C. M., “A Fundamental Study on the Development of Variable Preload Device Using Rubber Force,” J. Korean Soc. Precis. Eng., Vol. 28, No. 4, pp. 416–421, 2011.

    Google Scholar 

  56. Choi, C. H., Sim, M. S., and Lee, C. M., “A Basic Study on the Application of a Variable Preload Device using Rubber Pressure for High Speed Spindle Systems,” J. Korean Soc. Precis. Eng., Vol. 31, No. 8, pp. 677–682, 2014.

    Article  Google Scholar 

  57. Choi, C. H., Kim, D. H., and Lee, C. M., “A Study on the Development of a Deformable Rubber Variable Preload Device,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 12, pp. 2685–2688, 2014.

    Article  Google Scholar 

  58. Choi, C. H., Cha, N. H., and Lee, C. M., “A Fundamental Study on the Development of Variable Preload Device Using Toggle Joint Mechanism,” J. Korean Soc. Precis. Eng., Vol. 30, No. 3, pp. 260–265, 2013.

    Article  Google Scholar 

  59. Kim, D. H. and Lee, C. M., “A Study on the Conception in Variable Preload System using Energy Conversion Materials,” Proc. of KSMTE Autumn conference, pp. 215, 2011.

    Google Scholar 

  60. Choi, C. H. and Lee, C. M., “A Study on the Application of a Variable Preload using Liquid Pressure,” Proc. of KSMPE Spring Conference, p. 84, 2012.

    Google Scholar 

  61. Choi, C. H. and Lee, C. M., “A Variable Preload Device Using Liquid Pressure for Machine Tools Spindles,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 6, pp. 1009–1012, 2012.

    Article  Google Scholar 

  62. Kim, D. H. and Lee, C. M., “Effects of Automatic Variable Preload Device on Performance of Spindle,” Journal of Central South University, Vol. 19, pp. 150–154, 2012.

    Article  Google Scholar 

  63. Kim, D. H. and Lee, C. M., “A Study on the Development of a New Conceptual Automatic Variable Preload System for a Spindle Bearing,” International Journal of Advanced Manufacturing Technology, Vol. 65, pp. 817–824, 2013.

    Article  Google Scholar 

  64. Kim, D. H. and Lee, C. M., “Development of an Automatic Variable Preload Device using Uniformly Distributed Eccentric Mass for a High-Speed Spindle,” Int. J. Precis. Eng. Manuf., Vol. 18, No. 10, pp. 1419–1423, 2017.

    Article  Google Scholar 

  65. Kim, D. H., Woo, W. S., Lee, C. M., and Hwang, Y. K., “Performance Evaluation of a Variable Preload Spindle by Using Linear Actuator,” J. Korean Soc. Precis. Eng., Vol. 34, No. 8, pp. 511–515, 2017.

    Article  Google Scholar 

  66. Zhao, H., Wu, W. W., Li, X. H., and Li, H. F., “Stiffness Analysis of Angular Contact Ball Bearing under Non-Uniform Preload,” Proc. of IEEE International Symposium on Assembly and Manufacturing (ISAM), pp. 97–101, 2013. (DOI:10.1109/ISAM.2013.6643498)

    Google Scholar 

  67. Wu, W. W., Li, X. H., Xu, F., Hong, J., and Li, Y., “Investigating Effects of Non-Uniform Preload on the Thermal Characteristics of Angular Contact Ball Bearings through Simulations,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 228, No. 6, pp. 667–681, 2014.

    Article  Google Scholar 

  68. Li, X. H., Li, H. F., Zhang, Y. F., and Hong, J., “Investigation of Non-Uniform Preload on the Static and Rotational Performances for Spindle Bearing System,” International Journal of Machine Tools and Manufacture, Vol. 106, pp. 11–21, 2016.

    Article  Google Scholar 

  69. Li, X. H., Zhang, Y. F., Hong, J., Zhao, H., and Li, H. F., “Experiment Analysis of Spindle Performance with Rolling Bearing under Non-Uniform Preload,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 230, No. 17, pp. 3135–3146, 2016.

    Google Scholar 

  70. Li, X. H., Li, H. F., Hong, J., and Zhang, Y. F., “Heat Analysis of Ball Bearing under Nonuniform Preload based on Five Degrees of Freedom Quasi-Static Model,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 230, No. 6, pp. 709–728, 2016.

    Article  Google Scholar 

  71. Zhang, Y. F., Li, X. H., Hong, J., Yan, K., and Wang, S., “Investigation of Multiple Spindle Characteristics under Non-Uniform Bearing Preload,” Advances in Mechanical Engineering, Vol. 8, No. 2, pp. 1–12, 2016.

    Google Scholar 

  72. Wu, W. W., Hong, J., Li, Y., and Li, X. H., “Investigation of Non-Uniform Preload Effect on Stiffness Behavior of Angular Contact Ball Bearings,” Advances in Mechanical Engineering, Vol. 9, No. 3, pp. 1–19, 2017.

    Google Scholar 

  73. Zhang, Y. F., Wang, S., Li, X. H., Liu, G. H., “Wavelet Analysis for Spindle Vibration Signal Processing Under Non-Uniform Preload,” ASME 2015 International Mechanical Engineering Congress and Exposition, Vol. 13, Paper No. IMECE2015-51547, pp. V013T16A007, 2015. (doi:10.1115/IMECE2015-51547)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon-Man Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CM., Woo, WS. & Kim, DH. The latest preload technology of machine tool spindles: A review. Int. J. Precis. Eng. Manuf. 18, 1669–1679 (2017). https://doi.org/10.1007/s12541-017-0195-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-017-0195-0

Keywords

Navigation