Skip to main content
Log in

The state of the art in the electron beam manufacturing processes

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Some manufacturing processes use electron beams (EBs), a type of thermal energy transfer process, whereby the temperature of a machine and/or surface being treated is elevated due to EB irradiation. It is an advanced manufacturing process that can produce high-quality products with rapid, eco-friendly, cost-effective, and high-productivity processing characteristics. This paper describes the types of EBs and their specific characteristics depending on application areas in manufacturing. Furthermore, the state of the art of EB manufacturing, including various types of machining and surface treatments, is discussed along with research investigating the accuracy and mechanical and chemical properties of EB-processed materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herrmann, C., Schmidt, C., Kurle, D., Blume, S., and Thiede, S., “Sustainability in Manufacturing and Factories of the Future,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 283–292, 2014.

    Article  Google Scholar 

  2. Schmidt, C., Li, W., Thiede, S., Kara, S., and Herrmann, C., “A Methodology for Customized Prediction of Energy Consumption in Manufacturing Industries,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 163–172, 2015.

    Article  Google Scholar 

  3. Lo, T.-M. and Young, J.-S., “Improvements of Productivity for PCB Drilling by Laser Driller Machine,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 8, pp. 1575–1581, 2014.

    Article  Google Scholar 

  4. Yun, J.-H., Jeong, M.-S., Lee, S.-K., Jeon, J.-W., Park, J.-Y., and Kim, G. M., “Sustainable Production of Helical Pinion Gears: Environmental Effects and Product Quality,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 37–41, 2014.

    Article  Google Scholar 

  5. Yoo, D.-J., “New Paradigms in Cellular Material Design and Fabrication,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 12, pp. 2577–2589, 2015.

    Article  Google Scholar 

  6. Cha, N.-H., Woo, W.-S., and Lee, C.-M., “A Study on the Optimum Machining Conditions for Laser-Assisted Turn-Mill,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2327–2332, 2015.

    Article  Google Scholar 

  7. Dubey, A. K. and Yadava, V., “Laser Beam Machining -A Review,” International Journal of Machine Tools and Manufacture, Vol. 48, No. 6, pp. 609–628, 2008.

    Article  Google Scholar 

  8. Heo, J., Min, H., and Lee, M., “Laser Micromachining of Permalloy for Fine Metal Mask,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 225–230, 2015.

    Article  Google Scholar 

  9. Park, C., Shin, B.-S., Kang, M.-S., Ma, Y.-W., Oh, J.-Y., and Hong, S.-M., “Experimental Study on Micro-Porous Patterning using UV Pulse Laser Hybrid Process with Chemical Foaming Agent,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1385–1390, 2015.

    Article  Google Scholar 

  10. Prakash, S. and Kumar, S., “Fabrication of Microchannels on Transparent PMMA using CO2 Laser (10.6 µm) for Microfluidic Applications: An Experimental Investigation,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 2, pp. 361–366, 2015.

    Article  Google Scholar 

  11. Ngo, C.-V., Davaasuren, G., Oh, H.-S., and Chun, D.-M., “Transparency and Superhydrophobicity of Cone-Shaped Micropillar Array Textured Polydimethylsiloxane,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1347–1353, 2015.

    Article  Google Scholar 

  12. Kim, J., Je, T.-J., Cho, S.-H., Jeon, E.-C., and Whang, K.-H., “Micro-Cutting with Diamond Tool Micro-Patterned by Femtosecond Laser,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 6, pp. 1081–1085, 2014.

    Article  Google Scholar 

  13. Lim, T. W. and Yang, D.-Y., “Direct Fabrication of Nano-Wrinkled 3D Microstructures using Fitfully Accumulated Two-Photon Polymerization,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2427–2431, 2015.

    Article  Google Scholar 

  14. Cha, N.-H., and Lee, C.-M., “A Study on Machining Characteristics of Silicon Nitride with Spline Members in Laser-Assisted Turn-Mill,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 13, pp. 2691–2697, 2015.

    Article  Google Scholar 

  15. Guo, B., Zhao, Q., and Yu, X., “Surface Micro-Structuring of Coarse-Grained Diamond Wheels by Nanosecond Pulsed Laser for Improving Grinding Performance,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 10, pp. 2025–2030, 2014.

    Article  Google Scholar 

  16. Lee, C.-J., Kim, J.-D., and Kim, Y.-C., “Study on Monitoring of Plasma Emission Signal in Lap Welding of Zn Coated Steel Sheet Using CO2 Laser,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 3, pp. 495–500, 2015.

    Article  Google Scholar 

  17. Lee, S.-J., Takahashi, M., Kawahito, Y., and Katayama, S., “Microstructural Evolution and Characteristics of Weld Fusion Zone in High Speed Dissimilar Welding of Ti and Al,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 10, pp. 2121–2127, 2015.

    Article  Google Scholar 

  18. Park, D.-H. and Kwon, H.-H., “Development of Warm Forming Parts for Automotive Body Dash Panel using AZ31B Magnesium Alloy Sheets,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 10, pp. 2159–2165, 2015.

    Article  MathSciNet  Google Scholar 

  19. Joo, S.-M., Bang, H.-S., and Kwak, S.-Y., “Optimization of Hybrid CO2 Laser-GMA Welding Parameters on Dissimilar Materials AH32/STS304l using Grey-based Taguchi Analysis,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 3, pp. 447–454, 2014.

    Article  Google Scholar 

  20. Gao, X., Sun, Y., and Katayama, S., “Neural Network of Plume and Spatter for Monitoring High-Power Disk Laser Welding,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 4, pp. 293–298, 2014.

    Article  Google Scholar 

  21. Choi, W. and Kim, J., “Fractal Dimensional Analysis on Glass Fracture,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 7, pp. 1655–1660, 2015.

    Article  Google Scholar 

  22. Yu, J. H., Rho, Y., Kang, H., Jung, H. S., and Kang, K.-T., “Electrical Behavior of Laser-Sintered Cu based Metal-Organic Decomposition Ink in Air Environment and Application as Current Collectors in Supercapacitor,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 4, pp. 333–337, 2015.

    Article  Google Scholar 

  23. Khademzadeh, S., Parvin, N., and Bariani, P. F., “Production of Niti Alloy by Direct Metal Deposition of Mechanically Alloyed Powder Mixtures,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2333–2338, 2015.

    Article  Google Scholar 

  24. Gupta, N., Ahirrao, S. B., Paul, S., and Singh, R. K., “Modeling of Micro-Scale Fiber Laser Hardening Process and Optimization via Statistical Approximation of the Engineering Models,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2281–2287, 2015.

    Article  Google Scholar 

  25. Jung, K.-W., Kawahito, Y., and Katayama, S., “Mechanical Property and Joining Characteristics of Laser Direct Joining of CFRP to Polyethylene Terephthalate,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 1, pp. 43–48, 2014.

    Article  Google Scholar 

  26. Ho, C.-C. and He, J.-J., “On-Line Monitoring of Laser-Drilling Process based on Coaxial Machine Vision,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 4, pp. 671–678, 2014.

    Article  Google Scholar 

  27. Kim, J. and Park, H. W., “Influence of a Large Pulsed Electron Beam (LPEB) on the Corrosion Resistance of Ti-6Al-7Nb Alloys,” Corrosion Science, Vol. 90, pp. 153–160, 2015.

    Article  Google Scholar 

  28. Dureja, J., Singh, R., Singh, T., Singh, P., Dogra, M., and Bhatti, M. S., “Performance Evaluation of Coated Carbide Tool in Machining of Stainless Steel (AISI 202) under Minimum Quantity Lubrication (MQL),” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 123–129, 2015.

    Article  Google Scholar 

  29. Bae, D., Lee, J., Lee, S., Son, I., Baek, U., et al., “Evaluation on Hydrogen Embrittlement of Material Using Nondestructive Test,” Int. J. Precis. Eng. Manuf., Vol. 15, No. 6, pp. 989–993, 2014.

    Article  Google Scholar 

  30. Park, C., Kim, H., Lee, S., and Jeong, H., “The Influence of Abrasive Size on High-Pressure Chemical Mechanical Polishing of Sapphire Wafer,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 2, pp. 157–162, 2015.

    Article  Google Scholar 

  31. Hassel, T., Murray, N., Konya, R., Beniyash, A., and Bach, F.-W., “Nonvacuum Electron Beam Cutting and Welding-Two Partnering Processes for Fast and Highly Efficient Metal Working,” Welding in the World, Vol. 57, No. 3, pp. 315–322, 2013.

    Google Scholar 

  32. Ghatak, J., Huang, J.-H., and Liu, C.-P., “Derivation of the Surface Free Energy of ZnO and Gan using in situ Electron Beam Hole Drilling,” Nanoscale, Vol. 8, No. 1, pp. 634–640, 2016.

    Article  Google Scholar 

  33. Weglowski, M. S., Blacha, S., and Phillips, A., “Electron Beam Welding-Techniques and Trends-Review,” Vacuum, Vol. 130, pp. 72–92, 2016.

    Article  Google Scholar 

  34. Manfrinato, V. R., Zhang, L., Su, D., Duan, H., Hobbs, R. G., et al., “Resolution Limits of Electron-Beam Lithography Toward the Atomic Scale,” Nano Letters, Vol. 13, No. 4, pp. 1555–1558, 2013.

    Article  Google Scholar 

  35. Körner, C., “Additive Manufacturing of Metallic Components by Selective Electron Beam Melting-A Review,” International Materials Reviews, Vol. 61, No. 5, pp. 361–377, 2016.

    Article  Google Scholar 

  36. Uno, Y., Okada, A., Uemura, K., Raharjo, P., Furukawa, T., and Karato, K., “High-Efficiency Finishing Process for Metal Mold by Large-Area Electron Beam Irradiation,” Precision Engineering, Vol. 29, No. 4, pp. 449–455, 2005.

    Article  Google Scholar 

  37. Murray, J., Kinnell, P., Cannon, A., Bailey, B., and Clare, A., “Surface Finishing of Intricate Metal Mould Structures by Large-Area Electron Beam Irradiation,” Precision Engineering, Vol. 37, No. 2, pp. 443–450, 2013.

    Article  Google Scholar 

  38. Gao, Y.-K., “Surface Modification of TC4 Titanium Alloy by High Current Pulsed Electron Beam (HCPEB) with Different Pulsed Energy Densities,” Journal of Alloys and Compounds, Vol. 572, pp. 180–185, 2013.

    Article  Google Scholar 

  39. Kim, J., Park, S. S., and Park, H. W., “Corrosion Inhibition and Surface Hardening of Kp1 and Kp4 Mold Steels using Pulsed Electron Beam Treatment,” Corrosion Science, Vol. 89, pp. 179–188, 2014.

    Article  Google Scholar 

  40. Kim, J., Lee, W. J., and Park, H. W., “Mechanical Properties and Corrosion Behavior of the Nitriding Surface Layer of Ti-6Al-7Nb using Large Pulsed Electron Beam (LPEB),” Journal of Alloys and Compounds, Vol. 679, pp. 138–148, 2016.

    Article  Google Scholar 

  41. Hao, S., Li, M., and Chen, J., “Surface Microstructure and Improved Wear Resistance of AZ91 Magnesium Alloy after High Current Pulsed Electron Beam Treatment,” Applied Surface Science, In Press, DOI No. 10.1016/j.apsusc.2016.05.137, 2016.

    Google Scholar 

  42. Modinos, A., “Field, Thermionic and Secondary Electron Emission Spectroscopy,” Springer Science & Business Media, p. 1, 2013.

    Google Scholar 

  43. Skriver, H. L. and Rosengaard, N., “Surface Energy and Work Function of Elemental Metals,” Physical Review B, Vol. 46, No. 11, pp. 7157–7168, 1992.

    Article  Google Scholar 

  44. Engelko, V. and Mueller, G., “Influence of Particle Fluxes from a Target on the Characteristics of Intense Electron Beams,” Vacuum, Vol. 62, No. 2, pp. 97–103, 2001.

    Article  Google Scholar 

  45. Molokovsky, S. I. and Sushkov, A. D., “Intense Electron and Ion Beams,” Springer Science & Business Media, p. 14, 96, 225, 2005.

    Google Scholar 

  46. Mesyats, G. A., “Pulsed Power,” Springer Science & Business Media, p. 5, 36, 2007.

    Google Scholar 

  47. Liang, S. Y. and Shih, A. J., “Analysis of Machining and Machine Tools,” Springer, pp. 193–194, 202, 204-206, 2015.

    Google Scholar 

  48. Schultz, H., “Electron Beam Welding,” Elsevier, pp. 2, 12, 16, 176-195, 1994.

    Book  Google Scholar 

  49. Huth, M., Porrati, F., Schwalb, C., Winhold, M., Sachser, R., Dukic, M., et al., “Focused Electron Beam Induced Deposition: A Perspective,” Beilstein Journal of Nanotechnology, Vol. 3, No. 1, pp. 597–619, 2012.

    Article  Google Scholar 

  50. Franke, R., Haase, I., Klemm, M., and Zenker, R., “Friction and Wear Behaviour of Electron Beam Surface Treated Aluminium Alloys AlSi10Mg (Cu) and AlSi35,” Wear, Vol. 269, No. 11, pp. 921–929, 2010.

    Article  Google Scholar 

  51. Uno, Y., Okada, A., Uemura, K., Raharjo, P., Sano, S., et al., “A New Polishing Method of Metal Mold with Large-Area Electron Beam Irradiation,” Journal of Materials processing technology, Vol. 187, pp. 77–80, 2007.

    Article  Google Scholar 

  52. Lee, S. H., Lee, J. H., Park, C. W., Lee, C. Y., Kim, K., et al., “Continuous Fabrication of Bio-Inspired Water Collecting Surface via Roll-Type Photolithography,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 2, pp. 119–124, 2014.

    Article  MathSciNet  Google Scholar 

  53. Levinson, H. J., “Principles of Lithography,” SPIE Bellingham, Wash, USA, p. 31, 2005.

    Book  Google Scholar 

  54. Ali, M. Y., Hung, W., and Yongqi, F., “A Review of Focused Ion Beam Sputtering,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 1, pp. 157–170, 2010.

    Article  Google Scholar 

  55. Choi, J.-O. and Kim, C.-S., “Nanoscale Patterning and Welding by Solvent-Free Dry Particle Spray and Focused Ion Beam,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 1, No. 3, pp. 257–260, 2014.

    Article  Google Scholar 

  56. Stickel, W. and Langner, G., “Prevail-Evolution and Properties of Large Area Reduction Projection Electron Optics,” Microelectronic Engineering, Vol. 53, No. 1, pp. 283–286, 2000.

    Article  Google Scholar 

  57. McCord, M. A., “Electron Beam Lithography for 0.13 µm Manufacturing,” Journal of Vacuum Science & Technology B, Vol. 15, No. 6, pp. 2125–2129, 1997.

    Article  Google Scholar 

  58. Parker, N. W., Brodie, A. D., and McCoy, J. H., “High-Throughput NGL Electron-Beam Direct-Write Lithography System,” Proc. of SPIE, Vol. 3997, pp. 713–720, 2000.

    Article  Google Scholar 

  59. Wu, C. S., Chen, C., and Makiuchi, Y., “High-Energy Electron Beam Lithography for Nanoscale Fabrication,” INTECH Open Access Publisher, pp. 258–259, 265, 2010.

    Google Scholar 

  60. Kim, S., Marelli, B., Brenckle, M. A., Mitropoulos, A. N., Gil, E.-S., et al., “All-Water-based Electron-Beam Lithography using Silk as a Resist,” Nature Nanotechnology, Vol. 9, No. 4, pp. 306–310, 2014.

    Article  Google Scholar 

  61. Veroli, A., Mura, F., Balucani, M., and Caminiti, R., “Dose Influence on the PMMA E-Resist for the Development of High-Aspect Ratio and Reproducible Sub-Micrometric Structures by Electron Beam Lithography,” AIP Conference Proceedings, Paper No. 020010, 2016.

    Book  Google Scholar 

  62. Ma, Y., Xia, Y., Liu, J., Zhang, S., Shao, J., Lu, B.-R., and Chen, Y., “Processing Study of Su-8 Pillar Profiles with High Aspect Ratio by Electron-Beam Lithography,” Microelectronic Engineering, Vol. 149, pp. 141–144, 2016.

    Article  Google Scholar 

  63. Harriott, L. R., “Scattering with Angular Limitation Projection Electron Beam Lithography for Suboptical Lithography,” Journal of Vacuum Science & Technology B, Vol. 15, No. 6, pp. 2130–2135, 1997.

    Article  MathSciNet  Google Scholar 

  64. Chu, C. N., “Effect of Inductance in Micro EDM using High Frequency Bipolar Pulse Generator,” Int. J. Precis. Eng. Manuf.-Green Tech., Vol. 2, No. 3, pp. 299–303, 2015.

    Article  Google Scholar 

  65. Lee, W., Nam, E., Lee, C.-Y., Jang, K.-I., and Min, B.-K., “Electrochemical Oxidation Assisted Micromachining of Glassy Carbon Substrate,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 3, pp. 419–422, 2015.

    Article  Google Scholar 

  66. Leitz, K.-H., Koch, H., Otto, A., Maaz, A., Lö wer, T., and Schmidt, M., “Numerical Simulation of Drilling with Pulsed Beams,” Physics Procedia, Vol. 39, pp. 881–892, 2012.

    Article  Google Scholar 

  67. Kim, H.-M., Lee, M.-H., and Kim, K.-B., “Theoretical and Experimental Study of Nanopore Drilling by a Focused Electron Beam in Transmission Electron Microscopy,” Nanotechnology, Vol. 22, No. 27, Paper No. 275303, 2011.

    Article  Google Scholar 

  68. Liu, L., Liu, F., Fang, D., and Wang, H., “Effects of Different Ti Content in Zn-30Al Filler Metals on the Microstructure and Mechanical Properties of Mg-Al Butt Joints,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 11, pp. 2321–2326, 2015.

    Article  Google Scholar 

  69. Rouquette, S., Guo, J., and Le Masson, P., “Estimation of the Parameters of a Gaussian Heat Source by the Levenberg-Marquardt Method: Application to the Electron Beam Welding,” International Journal of Thermal Sciences, Vol. 46, No. 2, pp. 128–138, 2007.

    Article  Google Scholar 

  70. Rodgers, T. M., Madison, J. D., Tikare, V., and Maguire, M. C., “Predicting Mesoscale Microstructural Evolution in Electron Beam Welding,” JOM, Vol. 68, No. 5, pp. 1419–1426, 2016.

    Article  Google Scholar 

  71. Chi, C.-T., Chao, C.-G., Liu, T.-F., and Wang, C.-C., “Optimal Parameters for Low and High Voltage Electron Beam Welding of AZ Series Magnesium Alloys and Mechanism of Weld Shape and Pore Formation,” Science and Technology of Welding & Joining, Vol. 13, No. 2, pp. 199–211, 2013.

    Article  Google Scholar 

  72. Sun, Z. and Karppi, R., “The Application of Electron Beam Welding for the Joining of Dissimilar Metals: An Overview,” Journal of Materials Processing Technology, Vol. 59, No. 3, pp. 257–267, 1996.

    Article  Google Scholar 

  73. Su, S., Lin, H., Huang, J., and Ho, N., “Electron-Beam Welding Behavior in Mg-Al-based Alloys,” Metallurgical and Materials Transactions A, Vol. 33, No. 5, pp. 1461–1473, 2002.

    Article  Google Scholar 

  74. Muthupandi, V., Srinivasan, P. B., Shankar, V., Seshadri, S., and Sundaresan, S., “Effect of Nickel and Nitrogen Addition on the Microstructure and Mechanical Properties of Power Beam Processed Duplex Stainless Steel (UNS 31803) Weld Metals,” Materials Letters, Vol. 59, No. 18, pp. 2305–2309, 2005.

    Article  Google Scholar 

  75. Wang, S. and Wu, X., “Investigation on the Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Joints with Electron Beam Welding,” Materials & Design, Vol. 36, pp. 663–670, 2012.

    Article  Google Scholar 

  76. Zhao, X. and Liu, Y., “Research on Fatigue Behavior of Electron Beam Welding Joint of 06Cr19Ni10 Austenitic Stainless Steel Sheet,” Materials & Design, Vol. 57, pp. 494–502, 2014.

    Article  Google Scholar 

  77. Sarafan, S., Wanjara, P., Champliaud, H., and Thibault, D., “Characteristics of an Autogenous Single Pass Electron Beam Weld in Thick Gage CA6NM Steel,” The International Journal of Advanced Manufacturing Technology, Vol. 78, No. 9-12, pp. 1523–1535, 2015.

    Article  Google Scholar 

  78. Bardel, D., Nelias, D., Robin, V., Pirling, T., Boulnat, X., and Perez, M., “Residual Stresses Induced by Electron Beam Welding in a 6061 Aluminium Alloy,” Journal of Materials Processing Technology, Vol. 235, pp. 1–12, 2016.

    Article  Google Scholar 

  79. Kim, J. and Park, H.W., “Hybrid Deburring Process Assisted by a Large Pulsed Electron Beam (LPEB) for Laser-Fabricated Patterned Metal Masks,” Applied Surface Science, Vol. 357, pp. 1676–1683, 2015.

    Article  Google Scholar 

  80. Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., et al., “Metal Fabrication by Additive Manufacturing using Laser and Electron Beam Melting Technologies,” Journal of Materials Science & Technology, Vol. 28, No. 1, pp. 1–14, 2012.

    Article  Google Scholar 

  81. Schwerdtfeger, J., Schury, F., Stingl, M., Wein, F., Singer, R., and Körner, C., “Mechanical Characterisation of a Periodic Auxetic Structure Produced by SEBM,” Physica Status Solidi (b), Vol. 249, No. 7, pp. 1347–1352, 2012.

    Article  Google Scholar 

  82. Vautard, F., Ozcan, S., Poland, L., Nardin, M., and Meyer, H., “Influence of Thermal History on the Mechanical Properties of Carbon Fiber-Acrylate Composites Cured by Electron Beam and Thermal Processes,” Composites Part A: Applied Science and Manufacturing, Vol. 45, pp. 162–172, 2013.

    Article  Google Scholar 

  83. Bernard, B., Quet, A., Bianchi, L., Joulia, A., Mali, A., et al., “Thermal Insulation Properties of YSZ Coatings: Suspension Plasma Spraying (SPS) Versus Electron Beam Physical Vapor Deposition (EB-PVD) and Atmospheric Plasma Spraying (APS),” Surface and Coatings Technology, In Press, DOI No. 10.1016/j.surfcoat.2016. 06.010, 2016.

    Google Scholar 

  84. Jacobs, K. E. and Ferreira, P. M., “Painting and Direct Writing of Silver Nanostructures on Phosphate Glass with Electron Beam Irradiation,” Advanced Functional Materials, Vol. 25, No. 33, pp. 5261–5268, 2015.

    Article  Google Scholar 

  85. Hsu, K. H., Schultz, P. L., Ferreira, P. M., and Fang, N. X., “Electrochemical Nanoimprinting with Solid-State Superionic Stamps,” Nano Letters, Vol. 7, No. 2, pp. 446–451, 2007.

    Article  Google Scholar 

  86. Kim, J., Kim, J.-S., Kang, E.-G., and Park, H. W., “Surface Modification of the Metal Plates using Continuous Electron Beam Process (CEBP),” Applied Surface Science, Vol. 311, pp. 201–207, 2014.

    Article  Google Scholar 

  87. Wu, J., Allain-Bonasso, N., Zhang, X., Zou, J., Hao, S., Grosdider, T., and Dong, C., “Low Energy High Current Pulsed Electron Beam Treatment for Improving Surface Microstructure and Properties,” IOP Conference Series: Materials Science and Engineering, Vol. 12, No. 1, Paper No. 012010, 2010.

    Article  Google Scholar 

  88. Okada, A., Uno, Y., McGeough, J., Fujiwara, K., Doi, K., et al., “Surface Finishing of Stainless Steels for Orthopedic Surgical Tools by Large-Area Electron Beam Irradiation,” CIRP Annals-Manufacturing Technology, Vol. 57, No. 1, pp. 223–226, 2008.

    Article  Google Scholar 

  89. Kang, E.-G., Kim, J.-S., Lee, S.-W., Min, B.-K., and Lee, S.-J., “Emission Characteristics of High-Voltage Plasma Diode Cathode for Metal Surface Modification,” Int. J. Precis. Eng. Manuf., Vol. 16, No. 1, pp. 13–19, 2015.

    Article  Google Scholar 

  90. Park, H. W. and Lee, I., “Large Pulsed Electron Beam Surface Treatment of Translucent PMMA,” Applied Surface Science, Vol. 308, pp. 311–315, 2014.

    Article  Google Scholar 

  91. Zhang, K., Zou, J., Grosdidier, T., and Dong, C., “Formation and Evolution of Craters in Carbon Steels during Low-Energy High-Current Pulsed Electron-Beam Treatment,” Journal of Vacuum Science & Technology A, Vol. 27, No. 5, pp. 1217–1226, 2009.

    Article  Google Scholar 

  92. Poate, J., Foti, G., and Jacobson, D., “Surface Modification and Alloying: By Laser, Ion, and Electron Beams,” Springer Science & Business Media, p. 29, 2013.

    Google Scholar 

  93. Weisenburgera, A., Ana, W., Engelkob, V., Heinzela, A., Jianua, A., et al., “Intense Pulsed Electron Beams Application of Modified Materials,” Acta Physica Polonica A, Vol. 115, No. 6, pp. 1053–1055, 2009.

    Article  Google Scholar 

  94. Mueller, G., Engelko, V., Weisenburger, A., and Heinzel, A., “Surface Alloying by Pulsed Intense Electron Beams,” Vacuum, Vol. 77, No. 4, pp. 469–474, 2005.

    Article  Google Scholar 

  95. Zou, J., Grosdidier, T., Zhang, K., and Dong, C., “Mechanisms of Nanostructure and Metastable Phase Formations in the Surface Melted Layers of a HCPEB-Treated D2 Steel,” Acta Materialia, Vol. 54, No. 20, pp. 5409–5419, 2006.

    Article  Google Scholar 

  96. Zhang, K., Zou, J., Grosdidier, T., and Dong, C., “Microstructure and Property Modifications of an AISI H13 (4Cr5MoSiV) Steel Induced by Pulsed Electron Beam Treatment,” Journal of Vacuum Science & Technology A, Vol. 28, No. 6, pp. 1349–1355, 2010.

    Article  Google Scholar 

  97. Zou, J., Zhang, K., Hao, S., Dong, C., and Grosdidier, T., “Mechanisms of Hardening, Wear and Corrosion Improvement of 316l Stainless Steel by Low Energy High Current Pulsed Electron Beam Surface Treatment,” Thin Solid Films, Vol. 519, No. 4, pp. 1404–1415, 2010.

    Article  Google Scholar 

  98. Gao, B., Hao, S., Zou, J., Wu, W., Tu, G., and Dong, C., “Effect of High Current Pulsed Electron Beam Treatment on Surface Microstructure and Wear and Corrosion Resistance of an AZ91HP Magnesium Alloy,” Surface and Coatings Technology, Vol. 201, No. 14, pp. 6297–6303, 2007.

    Article  Google Scholar 

  99. Grosdidier, T., Zou, J., Stein, N., Boulanger, C., Hao, S., and Dong, C., “Texture Modification, Grain Refinement and Improved Hardness/Corrosion Balance of a Feal Alloy by Pulsed Electron Beam Surface Treatment in the Heating Mode,” Scripta Materialia, Vol. 58, No. 12, pp. 1058–1061, 2008.

    Article  Google Scholar 

  100. Deka, B. K., Kong, K., Park, Y.-B., and Park, H. W., “Large Pulsed Electron Beam (LPEB)-Processed Woven Carbon Fiber/ZnO Nanorod/Polyester Resin Composites,” Composites Science and Technology, Vol. 102, pp. 106–112, 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Wook Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, W.J. & Park, H.W. The state of the art in the electron beam manufacturing processes. Int. J. Precis. Eng. Manuf. 17, 1575–1585 (2016). https://doi.org/10.1007/s12541-016-0184-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-016-0184-8

Keywords

Navigation