Skip to main content
Log in

Phenomenological model of preloaded spindle behavior at high speed

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

High-speed machining spindles are high-precision mechanisms with a complex and very sensitive behavior. Frequency response functions are required to avoid unstable cutting conditions that lead to premature failure of spindle and tool. However, FRFs are affected by stiffness loss of the bearings at high speed. Indeed, the rotor’s behavior is driven by its boundary conditions which are the preloaded bearings. In order to obtain an accurate model of the preloaded bearing system, this paper focuses on the axial spindle behavior. An analytical model that computes the equilibrium state of the shaft, rear sleeve, and bearing arrangement is presented. A model enrichment method is presented with several new physical phenomena: the macroscopic deformations of the shaft and bearing rings as well as the rear sleeve’s complex behavior. The significance of these phenomena is evaluated with a sensitivity analysis and used for the model updating to obtain a just accurate enough model. The contributions of these enrichments are presented for a case study performed on an industrial spindle. A good agreement between the simulation and the experimental results are achieved that validates the model updating strategy and the phenomenologically enriched model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann Manuf Technol 59:781–802. doi:10.1016/j.cirp.2010.05.002

    Article  Google Scholar 

  2. Bossmanns B, Tu JF (1999) A thermal model for high speed motorized spindles. Int J Mach Tools Manuf 39(9):1345–1366. doi:10.1016/S0890-6955(99)00005-X

    Article  Google Scholar 

  3. Cao H, Holkup T, Altintas Y (2011) A comparative study on the dynamics of high speed spindles with respect to different preload mechanisms. Int J Adv Manuf Technol 57(9-12):871–883. doi:10.1007/s00170-011-3356-9

    Article  Google Scholar 

  4. Cao H, Niu L, He Z (2012) Method for vibration response simulation and sensor placement optimization of a machine tool spindle system with a bearing defect. Sensors (Switzerland) 12(7):8732–8754. doi:10.3390/s120708732

    Article  Google Scholar 

  5. Cao Y, Altintas Y (2004) A general method for the modeling of spindle-bearing systems. J Mech Des 126 (6):1089. doi:10.1115/1.1802311

    Article  Google Scholar 

  6. Chen JS, Hwang YW (2006) Centrifugal force induced dynamics of a motorized high-speed spindle. Int J Adv Manuf Technol 30(1-2):10–19. doi:10.1007/s00170-005-0032-y

    Article  Google Scholar 

  7. De Castelbajac C, Ritou M, Laporte S, Furet B (2014) Monitoring of distributed defects on HSM spindle bearings. Appl Acoust 77:159–168. doi:10.1016/j.apacoust.2013.07.008

    Article  Google Scholar 

  8. Ertürk A, Özgüven H, Budak E (2007) Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle–tool assemblies. Int J Mach Tools Manuf 47(1):23–32. doi:10.1016/j.ijmachtools.2006.03.001

    Article  Google Scholar 

  9. Gagnol V, Bouzgarrou B, Ray P, Barra C (2007) Model-based chatter stability prediction for high-speed spindles. Int J Mach Tools Manuf 47(7-8):1176–1186. doi:10.1016/j.ijmachtools.2006.09.002

    Article  Google Scholar 

  10. Gao S, Cheng K, Ding H, Fu H (2016) Multiphysics-based design and analysis of the high-speed aerostatic spindle with application to micro-milling. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 230(7):852–871. doi:10.1177/1350650115619609

    Article  Google Scholar 

  11. Holkup T, Hol ∖‘y S (2005) Prediction of thermal stability of spindle bearing systems. In: Proceedings of the 4th YSESM Youth Symposium of Experimental Solid Mechanics, pp 107– 108

  12. Houpert L (1997) A uniform analytical approach for ball and roller bearings calculations. J Tribol 119 (4):851–859. doi:10.1115/1.2833896

    Article  Google Scholar 

  13. Jedrzejewski J, Kwasny W (2010) Modelling of angular contact ball bearings and axial displacements for high-speed spindles. CIRP Ann Manuf Technol 59(1):377–382. doi:10.1016/j.cirp.2010.03.026

    Article  Google Scholar 

  14. Jones AB (1960) A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions. J Basic Eng 82(2):309. doi:10.1115/1.3662587

    Article  Google Scholar 

  15. Li H, Shin YC (2004) Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model. Int J Mach Tools Manuf 44(4):347–364. doi:10.1016/j.ijmachtools.2003.10.011

    Article  Google Scholar 

  16. Lin CW, Tu JF, Kamman J (2003) An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation. Int J Mach Tools Manuf 43(10):1035–1050. doi:10.1016/S0890-6955(03)00091-9 10.1016/S0890-6955(03)00091-9

    Article  Google Scholar 

  17. Lynagh N, Rahnejat H, Ebrahimi M, Aini R (2000) Bearing induced vibration in precision high speed routing spindles. Int J Mach Tools Manuf 40(4):561–577. doi:10.1016/S0890-6955(99)00076-0

    Article  Google Scholar 

  18. Noel D, Le Loch S, Ritou M, Furet B (2013a) HSM Spindle model updating with physical phenomena refinements. In: Volume 7A: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, ASME, p V07AT10A035. doi:10.1115/DETC2013-13141

  19. Noel D, Ritou M, Furet B, Le Loch S (2013b) Complete analytical expression of the stiffness matrix of angular contact ball bearings. J Tribol 135(4):041,101. doi:10.1115/1.4024109

  20. Ozturk E, Kumar U, Turner S, Schmitz T (2012) Investigation of spindle bearing preload on dynamics and stability limit in milling. CIRP Ann Manuf Technol 61(1):343–346. doi:10.1016/j.cirp.2012.03.134

    Article  Google Scholar 

  21. Palmgren A (1959) Ball and roller bearing engineering, 3rd edn. SKF industries, Philadelphia

    Google Scholar 

  22. Rantatalo M, Aidanpää JO, Göransson B, Norman P (2007) Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement. Int J Mach Tools Manuf 47(7-8):1034–1045. doi:10.1016/j.ijmachtools.2006.10.004 10.1016/j.ijmachtools.2006.10.004

    Article  Google Scholar 

  23. Spiewak S, Nickel T (2001) Vibration based preload estimation in machine tool spindles. Int J Mach Tools Manuf 41(4):567–588. doi:10.1016/S0890-6955(00)00081-X

    Article  Google Scholar 

  24. Swanson E, Powell CD, Weissman S (2005) A practical review of rotating machinery critical speeds and modes. Sound Vib 39(5):10–17

    Google Scholar 

  25. Yamazaki T, Matsubara A, Ikenaga S (2012) Measurement of rigidity change of preload switching spindle. Int J Automot Technol 6(2):175–179

    Article  Google Scholar 

  26. Zivkovic A, Zeljkovic M, Tabakovic S, Milojevic Z (2014) Mathematical modeling and experimental testing of high-speed spindle behavior. The International Journal of Advanced Manufacturing Technology. doi:10.1007/s00170-014-6519-7

  27. Zverv I, Pyoun YS, Lee KB, Kim JD, Jo I, Combs A (2005) An elastic deformation model of high speed spindles built into ball bearings. J Mater Process Technol 170(3):570–578. doi:10.1016/j.jmatprotec.2005.05.038

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Rabréau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabréau, C., Noël, D., Loch, S.L. et al. Phenomenological model of preloaded spindle behavior at high speed. Int J Adv Manuf Technol 90, 3643–3654 (2017). https://doi.org/10.1007/s00170-016-9702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9702-1

Keywords

Navigation