Skip to main content

Advertisement

Log in

Distributions, Sources, and Species of Heavy Metals/Trace Elements in Shallow Groundwater Around the Poyang Lake, East China

  • Original Paper
  • Published:
Exposure and Health Aims and scope Submit manuscript

Abstract

The shallow groundwater in the Poyang Lake area is one of the important sources of drinking water. However, there has been no systematic assessment on the groundwater quality associated with human consumptions. Here, we reported the concentrations and distributions of heavy metals/trace elements in the groundwater. Geographic Information System, ions relationship, and geochemical modeling program PHREEQC were used to investigate the distributions, sources, and chemical species of heavy metals/trace elements. The results showed that most of the shallow groundwater samples in the Poyang Lake area were in neutral or slightly acidic and oxidizing environment. The concentrations of Fe, Cr, Se, Cu, Zn, As, and Cd in most of the shallow groundwater samples were not significant in the area. However, the concentrations of Mn, Al in a few of samples and Pb in half of samples exceeded the limits, which makes the water unsuitable for drinking. The chemical components of shallow groundwater originated mainly from the dissolution of minerals and the input of anthropogenic activities. The concentrations and distributions of Pb, Mn, Al in groundwater largely depended on the dissolution of silicate and carbonate minerals, as well as the influence of human activities, as some of samples with high concentrations were found near industrial and domestic sites. The dissolution of minerals dominated the concentration distributions of Sr, Si, and Li. The concentrations of Al and Si in groundwater were also affected by pH. Chemical species of heavy metals/trace elements were also analyzed in this study. The data evaluation methods and results of this study could be useful to the water resource management and utilization in the area and other similar areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbas Z, Su C, Tahira F, Mapoma HWT, Aziz SZ (2015) Quality and hydrochemistry of groundwater used for drinking in Lahore, Pakistan: analysis of source and distributed groundwater. Environ Earth Sci 74:4281–4294. doi:10.1007/s12665-015-4432-5

    Article  CAS  Google Scholar 

  • Akers DB, MacCarthy MF, Cunningham JA, Annis J, Mihelcic JR (2015) Lead (Pb) contamination of self-supply groundwater systems in coastal Madagascar and predictions of blood lead levels in exposed children. Environ Sci Technol 49:2685–2693. doi:10.1021/es504517r

    Article  CAS  Google Scholar 

  • Ardelt D, Ivanov P, Schulz O (2007) Analysis of drinking water using ICP-OES. Spectroscopy 22(10):S46

    Google Scholar 

  • Arumi JL, Oyarzún R, Sandoval M (2005) Natural Protection Against Groundwater Pollution by Nitrates in the Central Valley of Chile/Protection Naturelle Contre la Pollution des Eaux Souterraines par les Nitrates Dans la Vallée Centrale du Chili. Hydrol Sci J 50:331–340

    Article  CAS  Google Scholar 

  • Belkhiri L, Mouni L, Tiri A (2012) Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria. Environ Geochem Health 34:1–13

    Article  CAS  Google Scholar 

  • Bilinski H, Schindler P (1982) Solubility and equilibrium constants of lead in carbonate solutions (25°C, I = 0.3 mol dm−3). Geochim Cosmochim Acta 46:921–928

    Article  CAS  Google Scholar 

  • Boulos AZ, Hafez R (2014) Heavy metal pollution index for groundwater quality assessment in Damascus Oasis, Syria. Environ Earth Sci 73:6591–6600. doi:10.1007/s12665-014-3882-5

    Article  CAS  Google Scholar 

  • Burger MS, Mercer SS, Shupe GD, Gagnon GA (2008) Manganese removal during bench-scale biofiltration. Water Res 42:4733–4742

    Article  CAS  Google Scholar 

  • Chen J, Deng LDB (1989) A study on heavy metal partitioning in sediments from Poyang Lake in China. Hydrobiologia 176:159–170

    Article  Google Scholar 

  • Chu Q, Zhao Z, Wang D, Tang X (2009) Application of ICP-AES in determining trace elements in lake water resources. Environ Eng 2:029

    Google Scholar 

  • Collins JF, Buol SW (1970) Effects of fluctuations in the Eh-pH environment on iron and/or manganese. Equilib Soil Sci 110:111–118

    Article  Google Scholar 

  • Crapper DR, Krishnan SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Trans Am Neurol Assoc 180:511–513

    CAS  Google Scholar 

  • Defo C, Yerima BPK, Kaur R, Bemmo N (2016) Spatial distribution of heavy metals in groundwaters and health risks associated in the Ntem watershed, Yaoundé, Cameroon. Water Sci Technol Water Supply 17(3):780–791

    Article  Google Scholar 

  • Deltombe E, Pourbaix M (1958) The electrochemical behavior of aluminum—potential pH diagram of the system AI-H2O at 25 °C. Corrosion 14:16–20

    Article  Google Scholar 

  • Ertenunal M, Wixson BG, Gale N, Pitt JL (1998) Evaluation of toxicity, bioavailability and speciation of lead, zinc and cadmium in mine/mill wastewaters. Chem Speciat Bioavailab 10:37–46

    Article  CAS  Google Scholar 

  • Fadda S, Fiori M, Pretti S (1998) The sandstone-hosted Pb occurrence of Rio Pischinappiu (Sardinia, Italy): a Pb-carbonate end-member. Ore Geol Rev 12:355–377

    Article  Google Scholar 

  • Florence TM (1982) Development of physico-chemical speciation procedures to investigate the toxicity of copper, lead, cadmium and zinc towards aquatic biota. Anal Chim Acta 141:73–94

    Article  CAS  Google Scholar 

  • Frisbie SH, Mitchell EJ, Dustin H, Maynard DM, Sarkar B (2012) World Health Organization discontinues its drinking-water guideline for manganese. Environ Health Perspect 120:775–778

    Article  CAS  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  CAS  Google Scholar 

  • Gimeno-García E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92:19–25

    Article  Google Scholar 

  • Grasby SE, Hutcheon I, Mcfarland L (1999) Surface-water groundwater interaction and the influence of ion exchange reactions on river chemistry. Geology 27:223

    Article  CAS  Google Scholar 

  • Guo Y, Chen R, He X (1991) Toxicty of heavy metals in river sediments to aquatic organisms. 1. Toxicty of various forms of lead to fishes. Acta Hydrobiol Sin 15(3):234–241

    Google Scholar 

  • Hallberg KB, Johnson DB (2005) Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Sci Total Environ 338:115–124

    Article  CAS  Google Scholar 

  • He Y, Yang D, Zhu R, Chen C (2011) The applicability of the quartile method in analyzing geomagnetic observation data. Seismol Geomagn Obs Res 32:66–70

    Google Scholar 

  • Hoobin D (2012) Ultra-fast ICP-OES determination of trace elements in water, conforming to U.S. EPA 200.7 and using next-generation sample introduction technology LC-GC North America

  • Hrkal Z, Gadalia A, Jucker C (2001) Contamination of groundwaters by heavy metals in the city of Ust Kamenogorsk, north-eastern Kazakhstan. Environ Geol 41:174–182

    Article  CAS  Google Scholar 

  • Hubert M, Veeken SVD (2008) Outlier detection for skewed data. J Chemom 22:235–246

    Article  CAS  Google Scholar 

  • Kondakis XG, Makris N, Leotsinidis M, Prinou M, Papapetropoulos T (1989) Possible health effects of high manganese concentration in drinking water. Arch Environ Health 44(3):175–178

    Article  CAS  Google Scholar 

  • Leung CM, Jiao JJ (2006) Heavy metal and trace element distributions in groundwater in natural slopes and highly urbanized spaces in Mid-Levels area, Hong Kong. Water Res 40:753–767. doi:10.1016/j.watres.2005.12.016

    Article  CAS  Google Scholar 

  • Li P, Qian H (2011) Human health risk assessment for chemical pollutants in drinking water source in Shizuishan City, Northwest China. Iran J Environ Health Sci Eng 8(1):41–48

    CAS  Google Scholar 

  • Li X, Sun Z, Liu J (2010) Hydrogeochemistry. Atomic Energy Press, Beijing

    Google Scholar 

  • Li P, Wu J, Qian H, Lyu X, Liu H (2014a) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36(4):693–712. doi:10.1007/s10653-013-9590-3

    Article  CAS  Google Scholar 

  • Li P, Qian H, Howard KWF, Wu J, Lyu X (2014b) Anthropogenic pollution and variability of manganese in alluvial sediments of the Yellow River, Ningxia, northwest China. Environ Monit Assess 186(3):1385–1398. doi:10.1007/s10661-013-3461-3

    Article  CAS  Google Scholar 

  • Li P, Wu J, Qian H (2016) Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: a case study in and around Hua County, China. Arab J Geosci 9(1):15. doi:10.1007/s12517-015-2059-1

    Article  CAS  Google Scholar 

  • Liu J (2009) Contribution of the main industrial cities to Poyang Lake water pollution and total pollutant control around Poyang Lake area. Nanchang University, Jiangxi Sheng

    Google Scholar 

  • Luo M, Li J, Cao W, Wang M (2008) Study of heavy metal speciation in branch sediments of Poyang Lake. J Environ Sci 20:161–166. doi:10.1016/s1001-0742(08)60025-x

    Article  CAS  Google Scholar 

  • Majumder RK, Halim MA, Shimada J, Saha BB, Zahid A, Hasan MQ, Islam MS (2013) Hydrochemistry and isotopic studies to identify Ganges River and riverbank groundwater interaction, southern Bangladesh. Arab J Geosci 6:4585–4591

    Article  CAS  Google Scholar 

  • Mounanga P, Khelidj A, Loukili A, Baroghel-Bouny V (2004) Predicting Ca(OH) content and chemical shrinkage of hydrating cement pastes using analytical approach. Cem Concr Res 34:255–265

    Article  CAS  Google Scholar 

  • Négrel P, Allègre CJ, Dupré B, Lewin E (1993) Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: The Congo Basin case. Earth Planet Sci Lett 120:59–76

    Article  Google Scholar 

  • Négrel P, Millot R, Roy S, Guerrot C, Pauwels H (2010) Lead isotopes in groundwater as an indicator of water–rock interaction (Masheshwaram catchment, Andhra Pradesh, India). Chem Geol 274:136–148

    Article  Google Scholar 

  • Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D (1989) Groundwater chemistry and water-rock interactions at Stripa. Geochim Cosmochim Acta 53:1727–1740

    Article  CAS  Google Scholar 

  • Pocock SJ, Smith M, Baghurst P (1994) Environmental lead and children’s intelligence: a systematic review of the epidemiological evidence. Bmj 309:1189

    Article  CAS  Google Scholar 

  • Province GBoJ (1985) The investigation report of groundwater resources in Poyang Lake Area, Jiangxi Province

  • Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ Geol 46:47–61

    CAS  Google Scholar 

  • Rao W, Jin K, Jiang S, Tan H, Han L, Tang Q (2015) Chemical and strontium isotopic characteristics of shallow groundwater in the Ordos Desert Plateau, North China: Implications for the dissolved Sr source and water–rock interactions. Chem Erde 75:365–374. doi:10.1016/j.chemer.2015.07.003

    Article  CAS  Google Scholar 

  • Schmucki E, Marty C, Fierz C, Weingartner R, Lehning M (2017) Impact of climate change in Switzerland on socioeconomic snow indices. Theor Appl Climatol 127:1–15

    Article  Google Scholar 

  • Sharma A, Singh AK, Kumar K (2012) Environmental geochemistry and quality assessment of surface and subsurface water of Mahi River basin, western India. Environ Earth Sci 65:1231–1250

    Article  CAS  Google Scholar 

  • Shvartsev SL (2009) Geochemistry of fresh groundwater in the main landscape zones of the Earth. Geochem Int 46:1285–1398. doi:10.1134/s0016702908130016

    Article  Google Scholar 

  • Shvartsev S, Shen Z, Sun Z, Wang G, Soldatova E, Guseva N (2016) Evolution of the groundwater chemical composition in the Poyang Lake catchment, China. Environ Earth Sci 75(18):1239

    Article  Google Scholar 

  • Soldatova E, Guseva N, Wang G (2014) Characteristic features of groundwater pollution in the Poyang Lake catchment IOP Conference Series. Earth Environ Sci 21:1–6. doi:10.1088/1755-1315/21/1/012023

    Article  Google Scholar 

  • Stöfen D (1971) The health dangers of lead in drinking water. Zeitschrift Für Präventivmedizin 16:325–332

    Article  Google Scholar 

  • Sun Z, Soldatova EA, Guseva NV, Shvartsev SL (2014) Impact of human activity on the groundwater chemical composition of the south part of the Poyang Lake Basin. IERI Procedia 8:113–118. doi:10.1016/j.ieri.2014.09.019

    Article  Google Scholar 

  • Tekerlekopoulou AG, Vayenas DV (2005) Ammonia, iron and manganese removal from potable water using trickling filters. Desalination 210:225–235

    Article  Google Scholar 

  • Vandervieren E, Hubert M (2008) An adjusted boxplot for skewed distributions. Comput Stat Data Anal 52:5186–5201

    Article  Google Scholar 

  • Wang Q, Riemann D, Vogt S, Glaser R (2014) Impacts of land cover changes on climate trends in Jiangxi province, China. Int J Biometeorol 58:645–660. doi:10.1007/s00484-013-0645-z

    Article  Google Scholar 

  • Watt GC, Britton A, Gilmour HG, Moore MR, Murray GD, Robertson SJ (2000) Public health implications of new guidelines for lead in drinking water: a case study in an area with historically high water lead levels. Food Chem Toxicol 38:S73–S79

    Article  CAS  Google Scholar 

  • Woo NC (1994) Pb on groundwater particles, Door county, Wisconsin. Environ Geol 24:150–156

    Article  CAS  Google Scholar 

  • Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7(10):3973–3982. doi:10.1007/s12517-013-1057-4

    Article  CAS  Google Scholar 

  • Wu J, Wang L, Wang S, Tian R, Xue C, Feng W, Li Y (2017) Spatiotemporal variation of groundwater quality in an arid area experiencing long-term paper wastewater irrigation, northwest China. Environ Earth Sci 76(13):460. doi:10.1007/s12665-017-6787-2

    Article  Google Scholar 

  • Xie Z, Jiang Y, Zhang H, Wang D, Qi S, Du Z, Zhang H (2016) Assessing heavy metal contamination and ecological risk in Poyang Lake area, China. Environ Earth Sci 75:1–15. doi:10.1007/s12665-015-5240-7

    Article  CAS  Google Scholar 

  • Xu B, Wang G (2016) Surface water and groundwater contaminations and the resultant hydrochemical evolution in the Yongxiu area, west of Poyang Lake, China. Environ Earth Sci 75:1–16

    Article  Google Scholar 

  • Yuan GL, Liu C, Chen L, Yang Z (2011) Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China. J Hazard Mater 185:336–345. doi:10.1016/j.jhazmat.2010.09.039

    Article  CAS  Google Scholar 

  • Zeng ZH et al (1989) A report on groundwater background values investigation in the Poyang Lake area, Jiangxi Province. Environmental Geology Brigade of Administration Bureau of Geology & Mineral Resources of Jiangxi Province, pp 23–56

  • Zhan L, Chen J, Zhang S, Li L, Huang D, Wang T (2016) Isotopic signatures of precipitation, surface water, and groundwater interactions, Poyang Lake Basin. China Environ Earth Sci 75:1307

    Article  Google Scholar 

  • Zhang Y et al (2006) Little Egrets (Egretta garzetta) and trace-metal contamination in wetlands of China. Environ Monit Assess 118:355–368. doi:10.1007/s10661-006-1496-4

    Article  CAS  Google Scholar 

  • Zhang ZP et al (1982) Regional hydrogeological (Poyang area) investigation report. Hydrogeological Brigade of Geological Bureau of Jiangxi Province, pp 33–46

  • Zhou WB, Hu CH, Zhao NF, Zhang P, Lou Q (2011) Application of grey relational analysis in hydrochemical composition characteristics of shallow groundwater in Poyang Lake area. Adv Mater Res 356–360:641–646. doi:10.4028/www.scientific.net/AMR.356-360.641

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (41602266, 41672243, 41272269), Fundamental Research Funds for the Central Universities (2652013088, 53200859428). We gratefully acknowledge comments and helpful information from the editors and the two anonymous reviewers. The authors declare that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, F., Wang, G., Shi, Z. et al. Distributions, Sources, and Species of Heavy Metals/Trace Elements in Shallow Groundwater Around the Poyang Lake, East China. Expo Health 10, 211–227 (2018). https://doi.org/10.1007/s12403-017-0256-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-017-0256-8

Keywords

Navigation