Skip to main content

Advertisement

Log in

Impact of climate change in Switzerland on socioeconomic snow indices

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Snow is a key element for many socioeconomic activities in mountainous regions. Due to the sensitivity of the snow cover to variations of temperature and precipitation, major changes caused by climate change are expected to happen. We analyze the evolution of some key snow indices under future climatic conditions. Ten downscaled and postprocessed climate scenarios from the ENSEMBLES database have been used to feed the physics-based snow model SNOWPACK. The projected snow cover has been calculated for 11 stations representing the diverse climates found in Switzerland. For the first time, such a setup is used to reveal changes in frequently applied snow indices and their implications on various socioeconomic sectors. Toward the end of the twenty-first century, a continuous snow cover is likely only guaranteed at high elevations above 2000 m a.s.l., whereas at mid elevations (1000–1700 m a.s.l.), roughly 50 % of all winters might be characterized by an ephemeral snow cover. Low elevations (below 500 m a.s.l.) are projected to experience only 2 days with snowfall per year and show the strongest relative reductions in mean winter snow depth of around 90 %. The range of the mean relative reductions of the snow indices is dominated by uncertainties from different GCM-RCM projections and amounts to approximately 30 %. Despite these uncertainties, all snow indices show a clear decrease in all scenario periods and the relative reductions increase toward lower elevations. These strong reductions can serve as a basis for policy makers in the fields of tourism, ecology, and hydropower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abegg (2013) Herausforderung Klimawandel: Chancen und Risiken für Tourismus in Graubünden. Chur

  • Abegg B, Agrawala S, Crick F, de Montfalcon A (2007) Climate change impacts and adaptation in winter tourism. In: Agrawala S (ed) Climate change in the European Alps. OECD, Paris, pp 25–60

    Google Scholar 

  • Addor N, Rössler O, Köplin N, Huss M, Weingartner R, Seibert J (2014) Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resour Res 50:7541–7562. doi:10.1002/2014WR015549

    Article  Google Scholar 

  • Andreescu M-P, Frost DB (1998) Weather and traffic accidents in Montreal, Canada. Clim Res 9:225–230

    Article  Google Scholar 

  • ASTRA (2015) Winterdienst auf den Nationalstrassen. http://www.astra.admin.ch/themen/nationalstrassen/02693/index.html?lang=en

  • Bavay M, Lehning M, Jonas T, Löwe H (2009) Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrol Process 23:95–108. doi:10.1002/hyp.7195

    Article  Google Scholar 

  • Bavay M, Grünewald T, Lehning M (2013) Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland. Adv Water Resour 55:4–16. doi:10.1016/j.advwatres.2012.12.009

    Article  Google Scholar 

  • Bebi P, Kulakowski D, Rixen C (2009) Snow avalanche disturbances in forest ecosystems—state of research and implications for management. For Ecol Manag 257:1883–1892. doi:10.1016/j.foreco.2009.01.050

    Article  Google Scholar 

  • Beniston M (1997) Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcings. Clim Chang 36:281–300

    Article  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 59:5–31

    Article  Google Scholar 

  • Blanchet J, Lehning M (2010) Mapping snow depth return levels: smooth spatial modeling versus station interpolation. Hydrol Earth Syst Sci 14:2527–2544. doi:10.5194/hess-14-2527-2010

    Article  Google Scholar 

  • Blanchet J, Marty C, Lehning M (2009) Extreme value statistics of snowfall in the Swiss Alpine region. Water Resour Res 45:12. doi:10.1029/2009wr007916

    Article  Google Scholar 

  • Bosshard T, Kotlarski S, Ewen T, Schaer C, Schär C (2011) Spectral representation of the annual cycle in the climate change signal. Hydrol Earth Syst Sci 15:2777–2788

    Article  Google Scholar 

  • Bosshard T, Kotlarski S, Zappa M, Schär C (2013) Hydrological climate-impact projections for the Rhine River: GCM–RCM uncertainty and separate temperature and precipitation effects*. J Hydrometeorol 15:697–713. doi:10.1175/JHM-D-12-098.1

    Article  Google Scholar 

  • Ceppi P, Scherrer SC, Fischer AM, Appenzeller C (2012) Revisiting Swiss temperature trends 1959–2008. Int J Climatol 32:203–213. doi:10.1002/joc.2260

    Article  Google Scholar 

  • CH2011 (2011) Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, ETH, NCCR Climate and OcCC, Zurich, Switzerland

  • Dilley AC, O’Brien DM (1998) Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Q J R Meteorol Soc 124:1391–1401. doi:10.1002/qj.49712454903

    Article  Google Scholar 

  • Egli L (2008) Spatial variability of new snow amounts derived from a dense network of Alpine automatic stations. Ann Glaciol 49:51–55

    Article  Google Scholar 

  • Fischer AM et al (2012) Climate change projections for Switzerland based on a Bayesian multi-model approach. Int J Climatol 32:2348–2371. doi:10.1002/joc.3396

    Article  Google Scholar 

  • Gonseth C (2013) Impact of snow variability on the Swiss winter tourism sector: implications in an era of climate change. Clim Chang 119:307–320

    Article  Google Scholar 

  • Haeberli W, Beniston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 27:258–265

    Google Scholar 

  • Hamon WR (1973) Computing actual precipitation in mountainous areas. Proc. WMO-IAHS Symp on the Distribution of Precipitation in Mountainous Areas, WMO, No. 326, 159–173

  • Hess J, Schwitter R, Denzler L (2014) Newsletter Schutzwald Schweiz Nr. 8. www.schutzwald-schweiz.ch

  • IPCC (2007) Climate change 2007: impacts, adaption and vulnerability. Contribution of working group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • Knutti R, Collins M, Eyring V, Gleckler PJ, Hewitson B, Mearns L Good practice guidance paper on assessing and combining multi model climate projections. In: IPCC Expert Meeting on Assessing and Combining Multi Model Climate Projections, 2010. p 1

  • Köplin N, Rößler O, Schädler B, Weingartner R (2014) Robust estimates of climate-induced hydrological change in a temperate mountainous region. Clim Chang 122:171–184. doi:10.1007/s10584-013-1015-x

    Article  Google Scholar 

  • Krajick K (2004) Climate change: all downhill from here? Science 303:1600–1602. doi:10.1126/science.303.5664.1600

    Article  Google Scholar 

  • Lang T (2009) Energetische Bedeutung der Technischen Pistenbeschneiung und Potentiale für Energieoptimierungen. Bundesamt für Energie BFE, Bern

  • Laternser M, Schneebeli M (2003) Long-term snow climate trends of the Swiss Alps (1931–99). Int J Climatol 23:733–750. doi:10.1002/joc.912

    Article  Google Scholar 

  • Lehning M, Bartelt P, Brown B, Fierz C (2002a) A physical SNOWPACK model for the Swiss avalanche warning: part III. Meteorological forcing, thin layer formation and evaluation. Cold Reg Sci Technol 35:169–184

    Article  Google Scholar 

  • Lehning M, Bartelt P, Brown B, Fierz C, Satyawali P (2002b) A physical SNOWPACK model for the Swiss avalanche warning: part II. Snow microstructure. Cold Reg Sci Technol 35:147–167

    Article  Google Scholar 

  • Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Clim 26:2137–2143. doi:10.1175/JCLI-D-12-00821.1

    Article  Google Scholar 

  • Marty C (2008) Regime shift of snow days in Switzerland. Geophys Res Lett 35. doi:10.1029/2008GL033998

  • Marty C, Meister R (2012) Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps. Theor Appl Climatol:1–11. doi:10.1007/s00704-012-0584-3

  • Marty C, Philipona R (2000) The Clear-Sky Index to separate clear-sky from cloudy-sky situations in climate research. Geophys Res Lett 27:2649–2652

    Article  Google Scholar 

  • Moss RH et al. (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:http://www.nature.com/nature/journal/v463/n7282/suppinfo/nature08823_S1.html

  • Motta R, Nola P (2001) Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. J Veg Sci 12:219–230. doi:10.2307/3236606

    Article  Google Scholar 

  • Norrman J, Eriksson M, Lindqvist S (2000) Relationships between road slipperiness, traffic accident risk and winter road maintenance activity. Clim Res 15:185–193

    Article  Google Scholar 

  • Nykänen M-L, Peltola H, Quine C, Kellomäki S, Broadgate M (1997) Factors affecting snow damage of trees with particular reference to European conditions. Silva Fenn 31:193–213

    Article  Google Scholar 

  • Peng S, Piao S, Ciais P, Fang J, Wang X (2010) Change in winter snow depth and its impacts on vegetation in China. Glob Chang Biol 16:3004–3013. doi:10.1111/j.1365-2486.2010.02210.x

    Google Scholar 

  • Rammig A, Bebi P, Bugmann H, Fahse L (2007) Adapting a growth equation to model tree regeneration in mountain forests. Eur J Forest Res 126:49–57. doi:10.1007/s10342-005-0088-0

    Article  Google Scholar 

  • Reynard E et al (2014) Interdisciplinary assessment of complex regional water systems and their future evolution: how socioeconomic drivers can matter more than climate. Wiley Interdiscip Rev: Water 1:413–426. doi:10.1002/wat2.1032

    Google Scholar 

  • Romerio (2002) European electrical systems and Alpine hydro resources. Gaia 3:200–202

    Google Scholar 

  • Schaefli B, Hingray B, Musy A (2007) Climate change and hydropower production in the Swiss Alps: quantification of potential impacts and related modelling uncertainties. Hydrol Earth Syst Sci Discuss 11:1191–1205

    Article  Google Scholar 

  • Scherrer SC, Appenzeller C (2006) Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Clim Res 32:187–199

    Article  Google Scholar 

  • Scherrer SC, Appenzeller C, Laternser M (2004) Trends in Swiss Alpine snow days: the role of local- and large-scale climate variability. Geophys Res Lett 31. doi:10.1029/2004GL020255

  • Schmucki E, Marty C, Fierz C, Lehning M (2014a) Evaluation of modelled snow depth and snow water equivalent at three contrasting sites in Switzerland using SNOWPACK simulations driven by different meteorological data input. Cold Reg Sci Technol 99:27–37. doi:10.1016/j.coldregions.2013.12.004

    Article  Google Scholar 

  • Schmucki E, Marty C, Fierz C, Lehning M (2014b) Simulations of 21st century snow response to climate change in Switzerland from a set of RCMs. Int J Climatol. doi:10.1002/joc.4205

    Google Scholar 

  • Statistica (2015) Anzahl der Straßenverkehrsunfälle mit Personenschaden durch Schnee und Glatteis in Deutschland in den Jahren 2010 bis 2013. Hamburg

  • STV (2014) Schweizer Tourismus in Zahlen 2013. Struktur und Branchendaten, Bern

    Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A Math Phys Eng Sci 365:2053–2075

    Article  Google Scholar 

  • Teich M, Marty C, Gollut C, Grêt-Regamey A, Bebi P (2012) Snow and weather conditions associated with avalanche releases in forests: rare situations with decreasing trends during the last 41 years. Cold Reg Sci Technol 83–84:77–88. doi:10.1016/j.coldregions.2012.06.007

    Article  Google Scholar 

  • Temperli C, Bugmann H, Elkin C (2012) Adaptive management for competing forest goods and services under climate change. Ecol Appl 22:2065–2077. doi:10.1890/12-0210.1

    Article  Google Scholar 

  • Unsworth MH, Monteith JL (1975) Long-wave radiation at the ground I. Angular distribution of incoming radiation. Q J R Meteorol Soc 101:13–24. doi:10.1002/qj.49710142703

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts at seasonal, decadal and centennial timescales; summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, UK

  • van Vuuren D et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Weigel AP, Knutti R, Liniger MA, Appenzeller C (2010) Risks of model weighting in multimodel climate projections. J Clim 23:4175–4191. doi:10.1175/2010JCLI3594.1

    Article  Google Scholar 

  • Wipf S, Stoeckli V, Bebi P (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim Chang 94:105–121. doi:10.1007/s10584-009-9546-x

    Article  Google Scholar 

  • Zubler E, Scherrer S, Croci-Maspoli M, Liniger M, Appenzeller C (2014) Key climate indices in Switzerland; expected changes in a future climate. Clim Chang 123:255–271. doi:10.1007/s10584-013-1041-8

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Swiss National Science Foundation (Grant No. 200021_132200). We strongly acknowledge MeteoSwiss for allocating the meteorological data and the Center for Climate Systems Modeling (C2SM) for providing the CH2011 data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Marty.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 98.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmucki, E., Marty, C., Fierz, C. et al. Impact of climate change in Switzerland on socioeconomic snow indices. Theor Appl Climatol 127, 875–889 (2017). https://doi.org/10.1007/s00704-015-1676-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1676-7

Keywords

Navigation