Skip to main content
Log in

Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Considerable progress has been made in developing models of cerebellar function in sensorimotor control, as well as in identifying key problems that are the focus of current investigation. In this consensus paper, we discuss the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints. The following topics are covered: oculomotor control, classical conditioning (evidence in animals and in humans), cerebellar control of motor speech, control of grip forces, control of voluntary limb movements, timing, sensorimotor synchronization, control of corticomotor excitability, control of movement-related sensory data acquisition, cerebro-cerebellar interaction in visuokinesthetic perception of hand movement, functional neuroimaging studies, and magnetoencephalographic mapping of cortico-cerebellar dynamics. While the field has yet to reach a consensus on the precise role played by the cerebellum in movement control, the literature has witnessed the emergence of broad proposals that address cerebellar function at multiple levels of analysis. This paper highlights the diversity of current opinion, providing a framework for debate and discussion on the role of this quintessential vertebrate structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baier B, Stoeter P, Dieterich M. Anatomical correlates of ocular motor deficits in cerebellar lesions. Brain. 2009;132:2114–24.

    Article  PubMed  CAS  Google Scholar 

  2. Ohki M, Kitazawa H, Hiramatsu T, Kaga K, Kitamura T, Yamada J, Nagao S. Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects. J Neurophysiol. 2009;101(2):934–47.

    PubMed  Google Scholar 

  3. Hiramatsu T, Ohki M, Kitazawa H, Xiong G, Kitamura T, Yamada J, Nagao S. Role of primate cerebellar lobulus petrosus of paraflocculus in smooth pursuit eye movement control revealed by chemical lesion. Neurosci Res. 2008;60(3):250–8.

    Article  PubMed  Google Scholar 

  4. Zee DS, Leigh RJ, Mathieu-Millaire F. Cerebellar control of ocular gaze stability. Ann Neurol. 1980;7:37–40.

    Article  PubMed  CAS  Google Scholar 

  5. Zee DS, Yamazaki A, Butler PH, Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46:878–99.

    PubMed  CAS  Google Scholar 

  6. Baier B, Dieterich M. Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions. Neurology. 2011;76:361–5.

    Article  PubMed  Google Scholar 

  7. Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228:199–202.

    Article  PubMed  CAS  Google Scholar 

  8. Jeong HS, Oh JY, Kim JS, Kim J, Lee AY, Oh SY. Periodic alternating nystagmus in isolated nodular infarction. Neurology. 2007;68:956–7.

    Article  PubMed  Google Scholar 

  9. Leigh RJ, Robinson DA, Zee DS. A hypothetical explanation for periodic alternating nystagmus: instability in the optokinetic–vestibular system. Ann NY Acad Sci. 1981;374:619–35.

    Article  PubMed  CAS  Google Scholar 

  10. Solomon D, Cohen B. Stimulation of the nodulus and uvula discharges velocity storage in the vestibulo-ocular reflex. Exp Brain Res. 1994;102:57–68.

    Article  PubMed  CAS  Google Scholar 

  11. Cohen B, Helwig D, Raphan T. Baclofen and velocity storage: a model of the effects of the drug on the vestibulo-ocular reflex in the rhesus monkey. J Physiol. 1987;393:703–25.

    PubMed  CAS  Google Scholar 

  12. Halmagyi GM, Rudge P, Gresty MA, Leigh RJ, Zee DS. Treatment of periodic alternating nystagmus. Ann Neurol. 1980;8:609–11.

    Article  PubMed  CAS  Google Scholar 

  13. Tilikete C, Vighetto A, Trouillas P, Honnorat J. Anti-GAD antibodies and periodic alternating nystagmus. Arch Neurol. 2005;62:1300–3.

    Article  PubMed  Google Scholar 

  14. Leigh RJ, Zee DS. The neurology of eye movements. Oxford: Oxford University Press; 2006.

    Google Scholar 

  15. Serra A, Liao K, Martinez-Conde S, Optican LM, Leigh RJ. Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology. 2008;70:810–2.

    Article  PubMed  CAS  Google Scholar 

  16. Shaikh AG, Marti S, Tarnutzer AA, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia. J Neurol Neurosurg Psychiatry. 2009;80:858–64.

    Article  PubMed  CAS  Google Scholar 

  17. Dean P, Porrill J. Adaptive-filter models of the cerebellum: computational analysis. Cerebellum. 2008;7:567–71.

    Article  PubMed  Google Scholar 

  18. Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R. Cerebellar contributions to adaptive control of saccades in humans. J Neurosci. 2009;29:12930–9.

    Article  PubMed  CAS  Google Scholar 

  19. Alahyane N, Fonteille V, Urquizar C, Salemme R, Nighoghossian N, Pélisson D, Tilikete C. Separate neural substrates in the human cerebellum for sensory-motor adaptation of reactive and of scanning voluntary saccades. Cerebellum. 2008;7:595–601.

    Article  PubMed  CAS  Google Scholar 

  20. Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.

    PubMed  CAS  Google Scholar 

  21. Straube A, Deubel H, Ditterich J, Eggert T. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology. 2001;57:2105–8.

    Article  PubMed  CAS  Google Scholar 

  22. Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80:1911–31.

    PubMed  CAS  Google Scholar 

  23. Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87:912–24.

    PubMed  CAS  Google Scholar 

  24. Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. J Neurophysiol. 2000;83:2047–62.

    PubMed  CAS  Google Scholar 

  25. Catz N, Dicke PW, Thier P. Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol. 2005;15:2179–89.

    Article  PubMed  CAS  Google Scholar 

  26. Pelisson D, Alahyane N, Panouilleres M, Tilikete C. Sensorimotor adaptation of saccadic eye movements. Neurosci Biobehav Rev. 2010;34:1103–20.

    Article  PubMed  CAS  Google Scholar 

  27. Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol. 2008;100:1949–66.

    Article  PubMed  Google Scholar 

  28. Shelhamer M, Tiliket C, Roberts D, Kramer PD, Zee DS. Short-term vestibulo-ocular reflex adaptation in humans. II. Error signals. Exp Brain Res. 1994;100:328–36.

    Article  PubMed  CAS  Google Scholar 

  29. Porrill J, Dean P. Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol. 2007;3:1935–50.

    Article  PubMed  CAS  Google Scholar 

  30. Dash S, Catz N, Dicke PW, Thier P. Specific vermal complex spike responses build up during the course of smooth-pursuit adaptation, paralleling the decrease of performance error. Exp Brain Res. 2010;205:41–55.

    Article  PubMed  Google Scholar 

  31. Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9:1265–79.

    Article  PubMed  Google Scholar 

  32. Ito M. Mechanisms of motor learning in the cerebellum. Brain Res. 2000;886:237–45.

    Article  PubMed  CAS  Google Scholar 

  33. Bernstein AL. Temporal factors in the formation of conditioned eyelid reactions in human subjects. J Gen Psychol. 1934;10:173–97.

    Article  Google Scholar 

  34. Marquis DG, Porter JM. Differential characteristics of conditioned eyelid responses established by reflex and voluntary reinforcement. J Exp Psychol. 1939;24:347–65.

    Article  Google Scholar 

  35. Grant DA, Adams JK. ‘Alpha’ conditioning in the eyelid. J Exp Psychol. 1944;34:136–42.

    Article  Google Scholar 

  36. Hilgard ER, Marquis DG. Conditioning and learning. 2nd ed. New York: Appleton-Century-Crofts; 1968.

    Google Scholar 

  37. Gormezano I, Kehoe EJ, Marshall BS. Twenty years of classical conditioning research with the rabbit. Prog Psychobiol Physiol Psychol. 1983;10:197–275.

    Google Scholar 

  38. Schneiderman N, Fuentes I, Gormezano I. Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science. 1962;136:650–2.

    Article  PubMed  CAS  Google Scholar 

  39. Trigo JA, Gruart A, Delgado-García JM. Discharge profiles of abducens, accessory abducens, and orbicularis oculi motoneurons during reflex and conditioned blinks in alert cats. J Neurophysiol. 1999;81:1666–84.

    PubMed  CAS  Google Scholar 

  40. Evinger C, Manning KA, Sibony PA. Eyelid movements. Mechanisms and normal data. Invest Ophthalmol Vis Sci. 1991;32:387–400.

    PubMed  CAS  Google Scholar 

  41. Gruart A, Blázquez P, Delgado-García JM. Kinematics of spontaneous, reflex, and conditioned eyelid movements in the alert cat. J Neurophysiol. 1995;74:226–48.

    PubMed  CAS  Google Scholar 

  42. Gruart A, Schreurs BG, del Toro ED, Delgado-García JM. Kinetic and frequency-domain properties of reflex and conditioned eyelid responses in the rabbit. J Neurophysiol. 2000;83:836–52.

    PubMed  CAS  Google Scholar 

  43. Koekkoek SK, Den Ouden WL, Perry G, Highstein SM, De Zeeuw CI. Monitoring kinetic and frequency-domain properties of eyelid responses in mice with magnetic distance measurement technique. J Neurophysiol. 2002;88:2124–33.

    PubMed  CAS  Google Scholar 

  44. Delgado-García JM, Gruart A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci. 2006;29:330–8.

    Article  PubMed  CAS  Google Scholar 

  45. Morcuende S, Delgado-Garcia JM, Ugolini G. Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. J Neurosci. 2002;22:8808–18.

    PubMed  CAS  Google Scholar 

  46. Thompson RF. The neurobiology of learning and memory. Science. 1986;233:941–7.

    Article  PubMed  CAS  Google Scholar 

  47. Woody CD. Understanding the cellular basis of memory and learning. Annu Rev Psychol. 1986;37:433–93.

    Article  PubMed  CAS  Google Scholar 

  48. Yeo CH, Hardiman M. J. Cerebellar cortex and eyeblink conditioning: a reexamination. Exp Brain Res. 1992;88:623–38.

    Article  PubMed  CAS  Google Scholar 

  49. Thompson RF. In search of memory traces. Annu Rev Psychol. 2005;56:1–23.

    Article  PubMed  Google Scholar 

  50. Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol. 2000;84:2680–90.

    PubMed  CAS  Google Scholar 

  51. Jiménez-Díaz L, Navarro-López Jde D, Gruart A, Delgado-García JM. Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J Neurosci. 2004;24:9138–45.

    Article  PubMed  CAS  Google Scholar 

  52. Welsh JP, Harvey JA. Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. J Physiol (Lond). 1991;444:459–80.

    CAS  Google Scholar 

  53. Welsh JP. Changes in the motor pattern of learned and unlearned responses following cerebellar lesions: a kinematic analysis of the nictitating membrane reflex. Neuroscience. 1992;47:1–19.

    Article  PubMed  CAS  Google Scholar 

  54. Bracha V, Zbarska S, Parker K, Carrel A, Zenitsky G, Bloedel JR. The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience. 2009;162:787–96.

    Article  PubMed  CAS  Google Scholar 

  55. Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic associations in the cerebellar–motoneuron network during motor learning. J Neurosci. 2009;29:10750–63.

    Article  PubMed  CAS  Google Scholar 

  56. Boele HJ, Koekkoek SKE, De Zeeuw CI. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front Cell Neurosci. 2009;3:19.

    Article  Google Scholar 

  57. Aou S, Woody CD, Birt D. Changes in the activity of units of the cat motor cortex with rapid conditioning and extinction of a compound eye blink movement. J Neurosci. 1992;12:549–59.

    PubMed  CAS  Google Scholar 

  58. Woodruff-Pak DS, Steinmetz JE. Past, present, and future of human eyeblink classical conditioning. In: Woodruff-Pak DS, Steinmetz JE, editors. Eyeblink classical conditioning: volume I. Applications in humans. Kluwer: Norwell; 2000. p. 1–17.

    Google Scholar 

  59. Gerwig M, Kolb FP, Timmann D. The involvement of the human cerebellum in eyeblink conditioning. Cerebellum. 2007;6:38–57.

    Article  PubMed  CAS  Google Scholar 

  60. Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N. Classical conditioning after cerebellar lesions in humans. Behav Neurosci. 1993;107:748–56.

    Article  PubMed  CAS  Google Scholar 

  61. Topka H, Valls-Sole J, Massaquoi SG, Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116:961–9.

    Article  PubMed  Google Scholar 

  62. Woodruff-Pak DS, Papka M, Ivry RB. Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology. 1996;10:443–58.

    Article  Google Scholar 

  63. Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A, et al. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain. 2003;126:71–94.

    Article  PubMed  CAS  Google Scholar 

  64. Bracha V, Zhao L, Wunderlich DA, Morrissy SJ, Bloedel JR. Patients with cerebellar lesions cannot acquire but are able to retain conditioned eyeblink reflexes. Brain. 1997;120:1401–13.

    Article  PubMed  Google Scholar 

  65. Gerwig M, Guberina H, Esser AC, Siebler M, Schoch B, Frings M, Kolb FP, Aurich V, Beck A, Forsting M, Timmann D. Evaluation of multiple-session delay eyeblink conditioning comparing patients with focal cerebellar lesions and cerebellar degeneration. Behav Brain Res. 2010;212:143–51.

    Article  PubMed  Google Scholar 

  66. Woodruff-Pak DS, Vogel 3rd RW, Ewers M, Coffey J, Boyko OB, Lemieux SK. MRI assessed volume of cerebellum correlates with associative learning. Neurobiol Learn Mem. 2001;76:342–57.

    Article  PubMed  CAS  Google Scholar 

  67. Dimitrova A, Gerwig M, Brol B, Gizewski ER, Forsting M, Beck A, Aurich V, Kolb FP, Timmann D. Correlation of cerebellar volume with eyeblink conditioning in healthy subjects and in patients with cerebellar cortical degeneration. Brain Res. 2008;1198:73–84.

    Article  PubMed  CAS  Google Scholar 

  68. Lye RH, Boyle DJ, Ramsden RT, Schady W. Effects of a unilateral cerebellar lesion on the acquisition of eye-blink conditioning in man. J Physiol. 1988;403:58P.

    Google Scholar 

  69. Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25:3919–31.

    Article  PubMed  CAS  Google Scholar 

  70. Ramnani N, Toni I, Josephs O, Ashburner J, Passingham RE. Learning and expectation related changes in the human brain during motor learning. J Neurophysiol. 2000;84:3026–35.

    PubMed  CAS  Google Scholar 

  71. Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci USA. 2008;105:8108–13.

    Article  PubMed  CAS  Google Scholar 

  72. Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit II. Lesions of the cerebellar cortex. Exp Brain Res. 1985;60:99–113.

    Article  PubMed  CAS  Google Scholar 

  73. Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13:1708–18.

    PubMed  CAS  Google Scholar 

  74. Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem. 2003;11:427–55.

    Article  Google Scholar 

  75. Timmann D, Konczak J, Ilg W, Donchin O, Hermsdörfer J, Gizewski ER, Schoch B. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience. 2009;162:836–51. Review.

    Article  PubMed  CAS  Google Scholar 

  76. Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, Ladd ME, Timmann D. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54(3):1786–94.

    Article  PubMed  CAS  Google Scholar 

  77. McGlinchey-Berroth R, Fortier CB, Cermak LS, Disterhoft JF. Temporal discrimination learning in abstinent chronic alcoholics. Alcohol Clin Exp Res. 2002;26:804–11.

    Article  PubMed  Google Scholar 

  78. Kronenbuerger M, Gerwig M, Brol B, Block F, Timmann D. Eyeblink conditioning is impaired in subjects with essential tremor. Brain. 2007;130:1538–51.

    Article  PubMed  Google Scholar 

  79. Teo JT, van de Warrenburg BP, Schneider SA, Rothwell JC, Bhatia KP. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia. J Neurol Neurosurg Psychiatry. 2009;80:80–3.

    Article  PubMed  CAS  Google Scholar 

  80. Smit AE, van der Geest JN, Vellema M, Koekkoek SK, Willemsen R, Govaerts LC, Oostra BA, De Zeeuw CI, VanderWerf F. Savings and extinction of conditioned eyeblink responses in fragile X syndrome. Genes Brain Behav. 2008;7:770–7.

    Article  PubMed  CAS  Google Scholar 

  81. Forsyth JK, Bolbecker AR, Mehta CS, Klaunig MJ, Steinmetz JE, O'Donnell BF, Hetrick WP. Cerebellar-dependent eyeblink conditioning deficits in schizophrenia spectrum disorders. Schizophr Bull. 2011; in press.

  82. Frings M, Gaertner K, Buderath P, Gerwig M, Christiansen H, Schoch B, Gizewski ER, Hebebrand J, Timmann D. Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Exp Brain Res. 2010;201:167–76.

    Article  PubMed  Google Scholar 

  83. Lenneberg EH. Biological foundations of language. New York: Wiley; 1967.

    Google Scholar 

  84. Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31:265–72.

    Article  PubMed  CAS  Google Scholar 

  85. Riecker A, Mathiak K, Wildgruber D, Erb M, Hertrich I, Grodd W, Ackermann H. fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology. 2005;64:700–6.

    Article  PubMed  CAS  Google Scholar 

  86. Jürgens U. Neural pathways underlying vocal control. Neurosci Biobehav Rev. 2002;26:232–58.

    Article  Google Scholar 

  87. Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.

    Article  Google Scholar 

  88. Darley FL, Aronson AE, Brown JR. Motor speech disorders. Philadelphia: WB Saunders; 1975.

    Google Scholar 

  89. Holmes G. Clinical symptoms cerebellar disease and their interpretation. Lancet. 1922;2:59–65.

    Google Scholar 

  90. Lechtenberg R, Gilman S. Speech disorders in cerebellar disease. Ann Neurol. 1978;3:285–90.

    Article  PubMed  CAS  Google Scholar 

  91. Ackermann H, Hertrich I. The contribution of the cerebellum to speech processing. J Neurol. 2000;13:95–116.

    Google Scholar 

  92. Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6:202–13.

    Article  PubMed  Google Scholar 

  93. Ackermann H, Ziegler W. Acoustic analysis of vocal instability in cerebellar dysfunctions. Ann Otol Rhinol Laryngol. 1994;103:98–104.

    PubMed  CAS  Google Scholar 

  94. Kent RD, Kent JF, Rosenbek JC, Vorperian HK, Weismer G. A speaking task analysis of the dysarthria in cerebellar disease. Folia Phon Logop. 1997;49:63–82.

    Article  CAS  Google Scholar 

  95. Callan DE, Tsytsarev V, Hanakawa T, Callan AM, Katsuhara M, Fukuyama H, Turner R. Song and speech: brain regions involved with perception and covert production. Neuroimage. 2006;31:1327–42.

    Article  PubMed  Google Scholar 

  96. Fiez JA, Raichle ME. Linguistic processing. In: Schmahmann JD, editor. The cerebellum and cognition. International review of neurobiology, vol. 41. San Diego: Academic; 1997. p. 233–54.

    Google Scholar 

  97. Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9.

    Article  PubMed  Google Scholar 

  98. Mariën P, Verhoeven J, Engelborghs S, Rooker S, Pickut BA, De Deyn PP. A role for the cerebellum in motor speech planning: evidence from foreign accent syndrome. Clin Neurol Neurosurg. 2006;108:518–25.

    Article  PubMed  Google Scholar 

  99. Mariën P, Verhoeven J. Cerebellar involvement in motor speech planning: some further evidence from foreign accent syndrome. Folia Phoniatr Logop. 2007;59:210–7.

    Article  PubMed  Google Scholar 

  100. Cohen DA, Kurowski K, Steven MS, Blumstein SE, Pascual-Leone A. Paradoxical facilitation: the resolution of foreign accent syndrome after cerebellar stroke. Neurology. 2009;73:566–7.

    Article  PubMed  CAS  Google Scholar 

  101. Mariën P, Verhoeven J, Brouns R, De Witte L, Dobbeleir A, De Deyn PP. Apraxic agraphia following a right cerebellar hemorrhage. Neurology. 2007;69:926–9.

    Article  PubMed  Google Scholar 

  102. Mariën P, Wackenier P, De Surgeloose D, De Deyn PP, Verhoeven J. Developmental coordination disorder: disruption of the cerebello-cerebral network evidenced by SPECT. Cerebellum. 2010;9:405–10.

    Article  PubMed  Google Scholar 

  103. Beaton A, Mariën P. Language, cognition and the cerebellum: grappling with and enigma. Cortex. 2010;46:811–20.

    Article  PubMed  Google Scholar 

  104. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110:763–73.

    Article  PubMed  Google Scholar 

  105. Murdoch BE. The cerebellum and language: historical perspective and review. Cortex. 2010;46:858–68.

    Article  PubMed  Google Scholar 

  106. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.

    Article  PubMed  Google Scholar 

  107. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  108. Manto MU. Physiology of the cerebellum. In: Cerebellar disorders. A practical approach to diagnosis and management. Cambridge: Cambridge University Press; 2010. p. 23–35.

    Chapter  Google Scholar 

  109. Wolpert DM, Flanagan JR. Motor prediction. Curr Biol. 2001;11:R729–32.

    Article  PubMed  CAS  Google Scholar 

  110. Flanagan JR, Wing AM. Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res. 1993;95:131–43.

    Article  PubMed  CAS  Google Scholar 

  111. Johansson RS, Westling G. Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res. 1988;71:72–86.

    PubMed  CAS  Google Scholar 

  112. Nowak DA, Hermsdörfer J, Marquardt C, Fuchs HH. Grip and load force coupling during discrete vertical movements in cerebellar atrophy. Exp Brain Res. 2002;145:28–39.

    Article  PubMed  Google Scholar 

  113. Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.

    Article  PubMed  Google Scholar 

  114. Rost K, Nowak DA, Timmann D, Hermsdörfer J. Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol. 2005;116:1405–14.

    Article  PubMed  Google Scholar 

  115. Brandauer B, Hermsdörfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, Timmann D. Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol. 2008;119(11):2528–37.

    Article  PubMed  CAS  Google Scholar 

  116. Nowak DA, Timmann D, Hermsdörfer J. Dexterity in cerebellar agenesis. Neuropsychologia. 2007;45:696–703.

    Article  PubMed  Google Scholar 

  117. Fellows SJ, Ernst J, Schwarz M, Topper R, Noth J. Precision grip in cerebellar disorders in man. Clin Neurophysiol. 2001;112:1793–802.

    Article  PubMed  CAS  Google Scholar 

  118. Serrien JD, Wiesendanger M. Grip-load coordination in cerebellar patients. Exp Brain Res. 1999;128:76–80.

    Article  PubMed  CAS  Google Scholar 

  119. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.

    Article  PubMed  CAS  Google Scholar 

  120. Blakemore SJ, Frith CD, Wolpert DM. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 2001; 1879–1884.

  121. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.

    Article  PubMed  CAS  Google Scholar 

  122. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.

    Article  PubMed  CAS  Google Scholar 

  123. Boecker H, Lee A, Mühlau M, Ceballos-Baumann AO, Ritzl A, Spilker M, Marquardt C, Hermsdörfer J. Force level independent representation of predictive grip force–load force coupling: a PET activation study. Neuroimage. 2005;25(1):243–52.

    Article  PubMed  CAS  Google Scholar 

  124. Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T. Internal forward models in the cerebellum: FMRI study on grip force and load force coupling. Progr Brain Res. 2003;142:171–88.

    Article  Google Scholar 

  125. Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshiaka T, Kawato M. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403:192–5.

    Article  PubMed  CAS  Google Scholar 

  126. Goodkin HP, Keating JG, Martin TA, Thach WT. Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Can J Neurol Sci. 1993;20 Suppl 3:S93–S104.

    PubMed  Google Scholar 

  127. Bares M, Lungu OV, Husárová I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–35.

    Article  PubMed  Google Scholar 

  128. Gilman S. The mechanism of cerebellar hypotonia. An experimental study in the monkey. Brain. 1969;92(3):621–38.

    Article  PubMed  CAS  Google Scholar 

  129. Gilman S, Bloedel JR, Lechtenberg R. Disorders of the cerebellum. Contemporary Neurology Series, vol. 21. Philadelphia: F.A. Davis; 1981.

    Google Scholar 

  130. Hallett M, Shahani BT, Young RR. EMG analysis in patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975;38:1163–9.

    Article  PubMed  CAS  Google Scholar 

  131. Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33.

    PubMed  CAS  Google Scholar 

  132. Manto M, Godaux E, Jacquy J, Hildebrand J. Cerebellar hypermetria associated with a selective decrease in the rate of rise of the antagonist electromyographic activity. Ann Neurol. 1996;39:271–4.

    Article  PubMed  CAS  Google Scholar 

  133. Manto M, Van Den Braber N, Grimaldi G, Lammertse P. A new myohaptic instrument to assess wrist motion dynamically. Sensors. 2010;10:3180–94.

    Article  PubMed  Google Scholar 

  134. Topka H, Konczak J, Schneider K, Boose A, Dichgans J. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res. 1998;119(4):493–503.

    Article  PubMed  CAS  Google Scholar 

  135. Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.

    PubMed  CAS  Google Scholar 

  136. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119(Pt 4):1183–98.

    Article  PubMed  Google Scholar 

  137. Timmann D, Brandauer B, Hermsdörfer J, Ilg W, Konczak J, Gerwig M, Gizewski ER, Schoch B. Lesion-symptom mapping of the human cerebellum. Cerebellum. 2008;7(4):602–6.

    Article  PubMed  CAS  Google Scholar 

  138. Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73.

    Article  PubMed  CAS  Google Scholar 

  139. Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.

    Article  PubMed  CAS  Google Scholar 

  140. Berardelli A, Hallett M, Rothwell JC, Agostino R, Manfredi M, Thompson PD, Marsden CD. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 1996;119(Pt 2):661–74.

    Article  PubMed  Google Scholar 

  141. Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76(1):492–509.

    PubMed  CAS  Google Scholar 

  142. Ivry R. Cerebellar timing systems. Int Rev Neurobiol. 1997;41:555–73.

    Article  PubMed  CAS  Google Scholar 

  143. Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127(Pt 3):561–74.

    PubMed  Google Scholar 

  144. Kent RD, Netsell R, Abbs JH. Acoustic characteristics of dysarthria associated with cerebellar disease. J Speech Hear Res. 1979;22(3):627–48.

    PubMed  CAS  Google Scholar 

  145. Ackermann H, Gräber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang. 1997;60(2):323–31.

    Article  PubMed  CAS  Google Scholar 

  146. Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci USA. 2010;107(25):11597–601.

    Article  PubMed  CAS  Google Scholar 

  147. Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13(2):250–5.

    Article  PubMed  CAS  Google Scholar 

  148. Moberget T, Karns CM, Deouell LY, Lindgren M, Knight RT, Ivry RB. Detecting violations of sensory expectancies following cerebellar degeneration: a mismatch negativity study. Neuropsychologia. 2008;46(10):2569–79.

    Article  PubMed  Google Scholar 

  149. O'Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.

    Article  PubMed  CAS  Google Scholar 

  150. Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.

    Article  PubMed  Google Scholar 

  151. Coull J, Nobre A. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol. 2008;18(2):137–44. Epub 2008 Aug 12.

    Article  CAS  PubMed  Google Scholar 

  152. Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):355–65.

    Article  PubMed  Google Scholar 

  153. Bullock D. Adaptive neural models of queuing and timing in fluent action. Trends Cogn Sci. 2004;8(9):426–33.

    Article  PubMed  Google Scholar 

  154. Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science. 2003;300(5624):1437–9.

    Article  PubMed  CAS  Google Scholar 

  155. Kalmbach BE, Ohyama T, Kreider JC, Riusech F, Mauk MD. Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn Mem. 2009;16(1):86–95.

    Article  PubMed  Google Scholar 

  156. Mangels JA, Ivry RB, Shimizu N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Brain Res Cogn Brain Res. 1998;7(1):15–39.

    Article  PubMed  CAS  Google Scholar 

  157. Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.

    Article  PubMed  CAS  Google Scholar 

  158. Yamazaki T, Tanaka S. Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum. 2009;8(4):423–32.

    Article  PubMed  Google Scholar 

  159. D'Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32(1):30–40.

    Article  PubMed  CAS  Google Scholar 

  160. Miall RC, Christensen LO, Cain O, Stanley J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 2007;5(11):e316.

    Article  PubMed  CAS  Google Scholar 

  161. Diedrichsen J, Criscimagna-Hemminger SE, Shadmehr R. Dissociating timing and coordination as functions of the cerebellum. J Neurosci. 2007;27(23):6291–301.

    Article  PubMed  CAS  Google Scholar 

  162. Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–38.

    Article  PubMed  CAS  Google Scholar 

  163. Pressing J. The referential dynamics of cognition and action. Psychol Rev. 1999;106:714–47.

    Article  Google Scholar 

  164. Bower JM. Control of sensory data acquisition. Int Rev Neurobiol. 1997;41:489–513.

    Article  PubMed  CAS  Google Scholar 

  165. Ivry R, Keele S. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52.

    Article  Google Scholar 

  166. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.

    Article  PubMed  CAS  Google Scholar 

  167. Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci. 1997;20:229–77.

    PubMed  CAS  Google Scholar 

  168. Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia. 2003;41:252–62.

    Article  PubMed  Google Scholar 

  169. Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge [see comments]. Science. 1994;263:1287–9.

    Article  PubMed  CAS  Google Scholar 

  170. Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, Petrosini L. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.

    Article  PubMed  Google Scholar 

  171. Tesche CD, Karhu JJ. Anticipatory cerebellar responses during somatosensory omission in man [see comments]. Hum Brain Mapp. 2000;9:119–42.

    Article  PubMed  CAS  Google Scholar 

  172. Molinari M, Chiricozzi F, Clausi S, Tedesco A, De Lisa M, Leggio M. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.

    Article  PubMed  Google Scholar 

  173. Restuccia D, Della MG, Valeriani M, Leggio MG, Molinari M. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain. 2007;130:276–87.

    Article  PubMed  Google Scholar 

  174. Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.

    Article  PubMed  CAS  Google Scholar 

  175. Penn HE. Neurobiological correlates of autism: a review of recent research. Child Neuropsychol. 2006;12:57–79.

    Article  PubMed  Google Scholar 

  176. Ho BC, Mola C, Andreasen NC. Cerebellar dysfunction in neuroleptic naive schizophrenia patients: clinical, cognitive, and neuroanatomic correlates of cerebellar neurologic signs. Biol Psychiatry. 2004;55:1146–53.

    Article  PubMed  Google Scholar 

  177. Rumiati RI, Papeo L. Corradi-Dell'Acqua C. Higher-level motor processes. Ann NY Acad Sci. 2010;1191:219–41.

    Article  PubMed  Google Scholar 

  178. Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.

    Article  PubMed  Google Scholar 

  179. Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull. 2005;67:448–58.

    Article  PubMed  Google Scholar 

  180. Hantman AW, Jessell TM. Clarke's column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci. 2010;13:1233–9.

    Article  PubMed  CAS  Google Scholar 

  181. Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil. 2009;13:6–10.

    Google Scholar 

  182. Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84:585–90.

    PubMed  CAS  Google Scholar 

  183. Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol. 2008;586:325–51.

    Article  PubMed  CAS  Google Scholar 

  184. Rudiak D, Marg E. Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalogr Clin Neurophysiol. 1994;93(5):358–71.

    Article  PubMed  CAS  Google Scholar 

  185. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.

    Article  PubMed  CAS  Google Scholar 

  186. Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557:689–700.

    Article  PubMed  CAS  Google Scholar 

  187. Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3:161–9.

    Article  PubMed  CAS  Google Scholar 

  188. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527.3:633–9.

    Article  Google Scholar 

  189. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Thetaburst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.

    Article  PubMed  CAS  Google Scholar 

  190. Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540:623–33.

    Article  PubMed  CAS  Google Scholar 

  191. Luft AR, Manto MU, Taib NOB. Modulation of motor cortex excitability by sustained peripheral stimulation: the interaction between the motor cortex and the cerebellum. Cerebellum. 2005;4:90–6.

    Article  PubMed  Google Scholar 

  192. Oulad Ben Taib N, Manto M, Laute MA, Brotchi J. The cerebellum modulates rodent cortical motor output after repetitive somatosensory stimulation. Neurosurgery. 2005;56:811–20.

    Article  PubMed  Google Scholar 

  193. Oulad Ben Taib N, Manto M, Massimo P, Brotchi J. Hemicerebellectomy blocks the enhancement of cortical motor output associated with repetitive somatosensory stimulation in the rat. J Physiol. 2005;567:293–300.

    Article  CAS  Google Scholar 

  194. Hanajima R, Wang R, Nakatani-Enomoto S, Hamada M, Terao Y, Furubayashi T, et al. Comparison of different methods for estimating motor threshold with transcranial magnetic stimulation. Clin Neurophysiol. 2007;118:2120–2.

    Article  PubMed  Google Scholar 

  195. Lee H, Gunraj C, Chen R. The effects of inhibitory and facilitatory intracortical circuits on interhemispheric inhibition in the human motor cortex. J Physiol. 2007;580.3:1021–32.

    Article  CAS  Google Scholar 

  196. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticortical inhibition in human motor cortex. J Physiol (Lond). 1993;471:501–19.

    CAS  Google Scholar 

  197. Benardo LS. Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex. J Neurophysiol. 1997;22:3134–44.

    Google Scholar 

  198. Liepert J, Kucinski T, Tüscher O, Pawlas F, Bäumer T, Weiller C. Motor cortex excitability after cerebellar infarction. Stroke. 2004;35:2484–8.

    Article  PubMed  CAS  Google Scholar 

  199. Da Guarda SNF, Cohen LG, Pinho MC, Yamamoto FI, Marchiori PE, Scaff M, Conforto AB. Interhemispheric asymmetry of corticomotor excitability after chronic cerebellar infarcts. Cerebellum. 2010;9:398–404.

    Article  Google Scholar 

  200. Schwenkreis P, Tegenthoff M, Witscher K, Börnke C, Przuntek H, Malin JP, et al. Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain. 2002;125(2):301–9.

    Article  PubMed  Google Scholar 

  201. Tamburin S, Fiaschi A, Marani S, Andreoli A, Manganotti P, Zanette G. Enhanced intracortical inhibition in cerebellar patients. J Neurol Sci. 2004;217(2):205–10.

    Article  PubMed  Google Scholar 

  202. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.

    Article  PubMed  Google Scholar 

  203. Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review. Cerebellum. 2005;4:218–23.

    Article  PubMed  Google Scholar 

  204. Clarac F. Some historical reflections on the neural control of locomotion. Brain Res Rev. 2008;57(1):13–21.

    Article  PubMed  Google Scholar 

  205. Apps R, Garwicz M. Anatomical and physiological foundations for cerebellar information processing. Nat Rev Neurosci. 2005;6(4):297–311.

    Article  PubMed  CAS  Google Scholar 

  206. Jueptner M, Weiller C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain. 2010;121(8):1437–49.

    Article  Google Scholar 

  207. Bower JM, Kassel J. Variability in tactile projection patterns to cerebellar folia crus IIA in the Norway rat. J Comp Neurol. 1990;302:768–78.

    Article  PubMed  CAS  Google Scholar 

  208. Santamaria F, Tripp P, Bower JM. Feed-forward inhibition controls the spread of granule cell induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol. 2007;97:248–63.

    Article  PubMed  Google Scholar 

  209. Bloedel JR, Courville J. Cerebellar afferent systems. In: Brookhart JM, Mountcastle VB, editors. Handbook of physiology, Sect. 1, Vol. II, Pt. 2. Bethesda: American Physiological Society; 1981. p. 735–829.

    Google Scholar 

  210. Keifer J, Houk JC. Motor function of the cerebellorubrospinal system. Physiol Rev. 1994;74(3):509–42.

    PubMed  CAS  Google Scholar 

  211. Grillner S. Supraspinal and segmental control of static and dynamic gamma-motoneurons in the cat. Acta Physiol Scand Suppl. 1969;327:1–34.

    PubMed  CAS  Google Scholar 

  212. Flament D, Fortier PA, Fetz EE. Response patterns and postspike effects of peripheral afferents in dorsal-root ganglia of behaving monkeys. J Neurophysiol. 1992;67:875–89.

    PubMed  CAS  Google Scholar 

  213. Holmes G. The cerebellum of man. The Hughlings Jackson memorial lecture. Brain. 1939;62:1–30.

    Article  Google Scholar 

  214. Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm. 2007;114(10):1339–48.

    Article  PubMed  CAS  Google Scholar 

  215. Diener HC, Dichgans J. Pathophysiology of cerebellar ataxia. Mov Disord. 1992;7(2):95–109.

    Article  PubMed  CAS  Google Scholar 

  216. Wessel K, Verleger R, Nazarenus D, Vieregge P, Kompf D. Movement-related cortical potentials preceding sequential and goal-directed finger and arm movements in patients with cerebellar atrophy. Electroencephalogr Clin Neurophysiol. 1994;92:331–41.

    Article  PubMed  CAS  Google Scholar 

  217. Applegate LM, Louis ED. Essential tremor: mild olfactory dysfunction in a cerebellar disorder. Parkinsonism Relat Disord. 2005;11(6):399–402.

    Article  PubMed  Google Scholar 

  218. Lisberger S. Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between. Neuron. 2010;66(4):477–91.

    Article  PubMed  CAS  Google Scholar 

  219. Guerrasio L, Quinet J, Buttner U, Goffart L. Fastigial oculomotor region and the control of foveation during fixation. J Neurophysiol. 2010;103(4):1988–2001.

    Article  PubMed  Google Scholar 

  220. Handel B, Their P, Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci. 2009;29(48):15126–33.

    Article  PubMed  CAS  Google Scholar 

  221. Parsons LM, Petacchi A, Schmahmann JD, Bower JM. Pitch discrimination in cerebellar patients: evidence for a sensory deficit. Brain Res. 2009;1303:84–96.

    Article  PubMed  CAS  Google Scholar 

  222. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  PubMed  CAS  Google Scholar 

  223. Vallbo ÅB. Afferent discharge from human muscle spindles in non-contracting muscle. Steady state impulse frequency as function of joint angle. Acta Physiol Scand. 1974;90:303–18.

    Article  PubMed  CAS  Google Scholar 

  224. Johansson RS, Landström U, Lundström R. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacement. Brain Res. 1982;244:17–25.

    Article  PubMed  CAS  Google Scholar 

  225. Burke D, Gandevia SC, Macefield G. Responses to passive movement of receptors in joint, skin, and muscle of the human hand. J Physiol. 1988;401:347–61.

    Google Scholar 

  226. Edin BB. Finger joint movement sensitivity of non-cutaneous mechanoreceptor afferents in the human radial nerve. Exp Brain Res. 1990;82:417–22.

    Article  PubMed  CAS  Google Scholar 

  227. Edin BB. Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. J Neurophysiol. 1992;67:1105–13.

    PubMed  CAS  Google Scholar 

  228. Edin BB, Abbs JH. Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of human hand. J Neurophysiol. 1991;65:657–70.

    PubMed  CAS  Google Scholar 

  229. Edin BB, Johansson N. Skin strain patterns provide kinaesthetic information to the human central nervous system. J Physiol. 1995;487:243–51.

    PubMed  CAS  Google Scholar 

  230. Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD. Manual motor performance in a deafferented man. Brain. 1982;105:515–42.

    Article  PubMed  Google Scholar 

  231. Bard C, Fleury M, Teasdale N, Paillard J, Nougier V. Contribution of proprioception for calibrating and updating the motor space. Can J Physiol Pharmacol. 1995;73:246–54.

    Article  PubMed  CAS  Google Scholar 

  232. Ghez C, Sainburg R. Proprioceptive control of interjoint coordination. Can J Physiol Pharmacol. 1995;73:273–84.

    Article  PubMed  CAS  Google Scholar 

  233. Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal participants and patients without proprioception. J Neurophysiol. 1995;73:820–35.

    PubMed  CAS  Google Scholar 

  234. Berlucchi G, Aglioti S. The body in the brain: neural bases of corporeal awareness. Trends Neurosci. 1997;20:560–4.

    Article  PubMed  CAS  Google Scholar 

  235. Berti A, Bottini G, Gandola M, Pia L, Smania N, Stracciari A, et al. Shared cortical anatomy for motor awareness and motor control. Science. 2005;309:488–91.

    Article  PubMed  CAS  Google Scholar 

  236. Committeri G, Pitzalis S, Galati G, Patria F, Pelle G, Sabatini U, et al. Neural bases of personal and extrapersonal neglect in humans. Brain. 2007;130:431–41.

    Article  PubMed  Google Scholar 

  237. Graziano MS. Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci USA. 1999;96:10418–21.

    Article  PubMed  CAS  Google Scholar 

  238. Graziano MSA, Cooke DF, Taylor CSR. Coding the location of the arm by sight. Science. 2000;290:1782–6.

    Article  PubMed  CAS  Google Scholar 

  239. Beppu H, Suda M, Tanaka R. Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain. 1984;107:787–809.

    Article  PubMed  Google Scholar 

  240. Liu X, Ingram HA, Palace JA, Miall RC. Dissociation of ‘on-line’ and ‘off-line’ visuomotor control of the arm by focal lesions in the cerebellum and brainstem. Neurosci Lett. 1999;264:121–4.

    Article  PubMed  CAS  Google Scholar 

  241. Ungerleider LG, Desimone R, Galkin TW, Mishkin M. Subcortical projections of area MT in the macaque. J Comp Neurol. 1984;223:368–86.

    Article  PubMed  CAS  Google Scholar 

  242. Schmahmann JD, Pandya DN. Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol. 1991;308:224–48.

    Article  PubMed  CAS  Google Scholar 

  243. Stein JF, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.

    PubMed  CAS  Google Scholar 

  244. Glickstein M. How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci. 2000;23:613–7.

    Article  PubMed  CAS  Google Scholar 

  245. Murphy JT, MacKay WA, Johnson F. Responses of cerebellar cortical neurons to dynamic proprioceptive inputs from forelimb muscles. J Neurophysiol. 1973;36:711–23.

    PubMed  CAS  Google Scholar 

  246. Bauswein E, Kolb FP, Leimbeck B, Rubia FJ. Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol. 1983;339:379–94.

    PubMed  CAS  Google Scholar 

  247. van Kan PLE, Gibson AR, Houk JC. Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:74–94.

    PubMed  Google Scholar 

  248. Parsons LM, Bower JM, Gao JH, Xiong J, Li J, Fox PT. Lateral cerebellar hemispheres actively support sensory acquisition and discrimination rather than motor control. Learn Mem. 1997;4:49–62.

    Article  PubMed  CAS  Google Scholar 

  249. Miall RC, Reckess GZ. The cerebellum and the timing of coordinated eye and hand tracking. Brain Cogn. 2002;48:212–26.

    Article  PubMed  CAS  Google Scholar 

  250. Hagura N, Oouchida Y, Aramaki Y, Okada T, Matsumura M, Sadato N, et al. Visuokinesthetic perception of hand movement is mediated by cerebro-cerebellar interaction between the left cerebellum and right parietal cortex. Cereb Cortex. 2009;19:176–86.

    Article  PubMed  Google Scholar 

  251. Naito E, Roland PE, Grefkes C, Choi HJ, Eickhoff S, Geyer S, et al. Dominance of the right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol. 2005;93:1020–34.

    Article  PubMed  Google Scholar 

  252. Sasaki K, Oka H, Kawaguchi S, Jinnai K, Yasuda T. Mossy fibre and climbing fibre responses produced in the cerebeller cortex by stimulation of the cerebral cortex in monkeys. Exp Brain Res. 1977;29:419–28.

    Article  PubMed  CAS  Google Scholar 

  253. Middleton FA, Strick PL. Cerebellar output: motor and cognitive channels. Trends Cogn Sci. 1998;2:348–54.

    Article  PubMed  CAS  Google Scholar 

  254. Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21:6283–91.

    PubMed  CAS  Google Scholar 

  255. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

    Article  PubMed  Google Scholar 

  256. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.

    Article  PubMed  CAS  Google Scholar 

  257. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.

    Article  PubMed  Google Scholar 

  258. O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2009;20:953–96.

    Article  PubMed  Google Scholar 

  259. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  Google Scholar 

  260. Rijntjes A, Büchel C, Kiebel S, Weiller C. Multiple somatotopic representations in the human cerebellum. Neuroreport. 1999;10:3653–8.

    Article  PubMed  CAS  Google Scholar 

  261. Blouin JS, Bard C, Paillard J. Contribution of the cerebellum to self-initiated synchronized movements: a PET study. Exp Brain Res. 2003;115:63–8.

    Google Scholar 

  262. Gowen E, Miall RC. Differentiation between external and internal cuing: a fMRI study comparing tracing and drawing. Neuroimage. 2007;36:396–410.

    Article  PubMed  CAS  Google Scholar 

  263. Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24:1173–81.

    Article  PubMed  CAS  Google Scholar 

  264. Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010;103:3330–6.

    Article  PubMed  CAS  Google Scholar 

  265. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a metaanalysis of neuroimaging studies. Neuroimage. 2008;44:489–501.

    Article  PubMed  Google Scholar 

  266. Tracy JL, Faro SS, Mohammed FB, Pinus AB, Madi SM, Laskas JW. Cerebellar mediation of the complexity of bimanual compared to unimanual movements. Neurology. 2001;57:1862–9.

    Article  PubMed  CAS  Google Scholar 

  267. Ramnami N, Toni I, Passingham RE, Haggard P. The cerebellum and parietal cortex play a specific role in coordination: a PET study. Neuroimage. 2001;14:899–911.

    Article  Google Scholar 

  268. Thickbroom GW, Byrnes ML, Mastaglia FL. Dual representation of the hand in the cerebellum: activation with voluntary and passive finger movement. Neuroimage. 2003;18:670–4.

    Article  PubMed  Google Scholar 

  269. Habas C, Axelrad CAH, Nguyen TH, Cabanis EA. Specific neocerebellar activation during out-of-phase bimanual movements. Neuroreport. 2004;15:595–9.

    Article  PubMed  CAS  Google Scholar 

  270. Küper M, Dimitrova A, Thürling M, Maderwald S, Roths J, Elles HG, Gizewski ER, Ladd ME, Diedrichsen J, Timmann D. Evidence for a motor and a non-motor domain in the human dentate nucleus—an fMRI study. Neuroimage. 2011;54:2612–22.

    Article  PubMed  Google Scholar 

  271. Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2009;9:22–8.

    Article  PubMed  Google Scholar 

  272. Chan RCK, Huang J, Din X. Dexterous movement complexity and cerebellar activation: a metaanalysis. Brain Res Rev. 2009;59:316–23.

    Article  PubMed  Google Scholar 

  273. Witt ST, Meyerand ME, Laird AR. Functional neuroimaging correlates of finger tapping task variations: an ALE meta-analysis. Neuroimage. 2008;42(1):343–56.

    Article  PubMed  Google Scholar 

  274. Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage. 2004;21:1416–27.

    Article  PubMed  CAS  Google Scholar 

  275. Jäncke L, Specht K, Mirzazade S, Peters M. The effect of finger-movement speed of the dominant and subdominant hand on cerebellar activation: a functional magnetic resonance imaging study. Neuroimage. 1999;9:497–507.

    Article  PubMed  Google Scholar 

  276. Lehéricy S, Benali H, Van de Moortele PF, Pélégrini-Issac M, Waechter T, Ugurbil K, Doyon J. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA. 2005;102(35):12566–71.

    Article  PubMed  CAS  Google Scholar 

  277. Meister IG, Foltys H, Gallea C, Hallett M. How the brain handles temporally uncoupled bimanual movements. Cereb Cortex. 2011;20(12):2996–3004.

    Article  Google Scholar 

  278. Spencer RMC, Verstynen T, Brett M, Ivry R. Cerebellar activation during discrete and not continuous timed movements: an fMRI study. Neuroimage. 2007;36:378–87.

    Article  PubMed  Google Scholar 

  279. Tanaka Y, Fujimara N, Tsuji T, Maruishi M, Muranaka H, Kasai T. Functional interactions between the cerebellum and the premotor cortex for error correction during the slow rate force production task: an fMRI study. Exp Brain Res. 2009;193(1):143–50.

    Article  PubMed  Google Scholar 

  280. Lotze M, Halsband U. Motor imagery. J Physiol Paris. 2006;99:386–95.

    Article  PubMed  Google Scholar 

  281. Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE. Motor sequence learning: a study with positron emission tomography. J Neurosci. 1994;14:3775–90.

    PubMed  CAS  Google Scholar 

  282. Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Underleider LG. Experience dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA. 2002;99:1017–22.

    Article  PubMed  CAS  Google Scholar 

  283. Floyer-Lea A, Matthews PM. Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol. 2005;94:512–8.

    Article  PubMed  CAS  Google Scholar 

  284. Okada Y, Lauritzen M, Nicholson C. MEG source models and physiology. Phys Med Biol. 1987;32(1):43–51.

    Article  PubMed  CAS  Google Scholar 

  285. Tesche CD, Karhu J. Somatosensory evoked magnetic fields arising from sources in the human cerebellum. Brain Res. 1997;744(1):23–31.

    Article  PubMed  CAS  Google Scholar 

  286. Ivry R. Exploring the role of the cerebellum in sensory anticipation and timing: commentary on Tesche and Karhu. Hum Brain Mapp. 2000;9(3):115–8.

    Article  PubMed  CAS  Google Scholar 

  287. Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol. 2007;17(6):649–55.

    Article  PubMed  CAS  Google Scholar 

  288. Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156–65.

    Article  PubMed  CAS  Google Scholar 

  289. Wilson TW, Slason E, Hernandez OO, Asherin R, Reite ML, Teale PD, Rojas DC. Aberrant high-frequency desynchronization of cerebellar cortices in early-onset psychosis. Psychiatry Res. 2009;174(1):47–56.

    Article  PubMed  Google Scholar 

  290. Hari R, Salmelin R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 1997;20(1):44–9.

    Article  PubMed  CAS  Google Scholar 

  291. Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D. Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. Neuroimage. 2006;32(3):1281–9.

    Article  PubMed  Google Scholar 

  292. Gross J, Timmermann L, Kujala J, Dirks M, Schmitz F, Salmelin R, Schnitzler A. The neural basis of intermittent motor control in humans. Proc Natl Acad Sci USA. 2002;99(4):2299–302.

    Article  PubMed  CAS  Google Scholar 

  293. Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126(Pt 1):199–212.

    PubMed  Google Scholar 

  294. Timmermann L, Gross J, Butz M, Kircheis G, Haussinger D, Schnitzler A. Pathological oscillatory coupling within the human motor system in different tremor syndromes as revealed by magnetoencephalography. Neurol Clin Neurophysiol. 2004;2004:26.

    PubMed  CAS  Google Scholar 

  295. Schnitzler A, Timmermann L, Gross J. Physiological and pathological oscillatory networks in the human motor system. J Physiol Paris. 2006;99(1):3–7.

    Article  PubMed  Google Scholar 

  296. Pollok B, Butz M, Gross J, Schnitzler A. Intercerebellar coupling contributes to bimanual coordination. J Cogn Neurosci. 2007;19(4):704–19.

    Article  PubMed  Google Scholar 

  297. Wilson TW, Slason E, Asherin R, Kronberg E, Reite ML, Teale PD, Rojas DC. An extended motor network generates beta and gamma oscillatory perturbations during development. Brain Cogn. 2010;73(2):75–84.

    Article  PubMed  Google Scholar 

  298. Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.

    Article  PubMed  CAS  Google Scholar 

  299. Andreasen NC, O'Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, Watkins GL, Hichwa RD. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA. 1996;93(18):9985–90.

    Article  PubMed  CAS  Google Scholar 

  300. Perez Velazquez JL, Barcelo F, Hung Y, Leshchenko Y, Nenadovic V, Belkas J, Raghavan V, Brian J, Garcia Dominguez L. Decreased brain coordinated activity in autism spectrum disorders during executive tasks: reduced long-range synchronization in the frontoparietal networks. Int J Psychophysiol. 2009;73(3):341–9.

    Article  PubMed  CAS  Google Scholar 

  301. Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, Seidman LJ, Schmahmann JD, Pascual-Leone A. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1–3):91–100.

    Article  PubMed  Google Scholar 

  302. Martin T, Houck JM, Bish JP, Kiciæ D, Woodruff CC, Moses SN, Lee DC, Tesche CD. MEG reveals different contributions of somatomotor cortex and cerebellum to simple reaction time after temporally structured cues. Hum Brain Mapp. 2006;27(7):552–61.

    Article  PubMed  Google Scholar 

  303. Krause V, Schnitzler A, Pollok B. Functional network interactions during sensorimotor synchronization in musicians and non-musicians. Neuroimage. 2010;52(1):245–51.

    Article  PubMed  Google Scholar 

  304. Guggisberg AG, Dalal SS, Findlay AM, Nagarajan SS. High-frequency oscillations in distributed neural networks reveal the dynamics of human decision making. Front Hum Neurosci. 2007;1:14.

    PubMed  Google Scholar 

  305. Kessler K, Biermann-Ruben K, Jonas M, Siebner HR, Bäumer T, Münchau A, Schnitzler A. Investigating the human mirror neuron system by means of cortical synchronization during the imitation of biological movements. Neuroimage. 2006;33(1):227–38.

    Article  PubMed  Google Scholar 

  306. Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, Canolty RT, Berger MS, Knight RT, Barbaro NM, Kirsch HE, Nagarajan SS. Five-dimensional neuroimaging: localization of the time-frequency dynamics of cortical activity. Neuroimage. 2008;40(4):1686–700.

    Article  PubMed  Google Scholar 

  307. Kotini A, Mavraki E, Anninos P, Piperidou H, Prassopoulos P. Magnetoencephalographic findings in two cases of juvenile myoclonus epilepsy. Brain Topogr. 2010;23(1):41–5.

    Article  PubMed  CAS  Google Scholar 

  308. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Manto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manto, M., Bower, J.M., Conforto, A.B. et al. Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement. Cerebellum 11, 457–487 (2012). https://doi.org/10.1007/s12311-011-0331-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0331-9

Keywords

Navigation