Skip to main content
Log in

Cerebellum: Connections and Functions

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In addition to its role in motor control, reflex adaptation, and motor learning, three sorts of evidence have been put forward to support the idea that the cerebellum may also be involved in cognition. Patients with cerebellar lesions are reported to have deficits in performing one or another cognitive task. The cerebellum is often seen to be activated when normal subjects perform such tasks. There are connections to and from areas of the prefrontal cortex that may be involved in cognition. In this paper, we review the anatomical evidence to support the claim. We suggest that there are only minor connections with cognitive areas of the cerebral cortex and that some of the imaging evidence may reflect the cerebellum’s role in the control of eye movements rather than cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Rolando L (1968) Saggio sopra la vera struttura del cervello dell’uomo e degl’animali e sopra le funzionei del sistema nervosa: Sassari: 1809. English translation in Clarke E, O’Malley C. The human brain and spinal cord. California University Press, Berkeley and Los Angeles, pp 653–656

  2. Flourens P (1968) Recherche experimentales sur les proprietes et les fonctions du systeme nerveux dans les animaux vertebres. Paris: Crevot 1824. English translation in Clark E, O’Malley C. The human brain and spinal cord. California University Press, Berkeley and Los Angeles

  3. Luciani L (1891) Il cereveletto. Successori Le Monniere, Firenze

    Google Scholar 

  4. André-Thomas J (1912) Cerebellar functions. Journal of Nervous and Mental Disease Publishing Company, New York (Nervous and Mental Disease Monograph Series No. 12. Translated from the French by W. Conyers Herring)

    Google Scholar 

  5. Sherrington C (1906) The integrative action of the nervous system. Yale, New Haven

    Google Scholar 

  6. Ramon y Cajal S (1955) Histologie du Nysteme Nerveux. CSIC, Madrid

    Google Scholar 

  7. Leiner H, Leiner A, Dow R (1989) Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci 103:989–1008

    Article  Google Scholar 

  8. Schmahmann J (1991) An emerging concept. The cerebellar contribution to higher function. Arch Neurol 48:1178–1187

    PubMed  CAS  Google Scholar 

  9. Land M (2006) Eye movements and the control of actions in everyday life. Prog Retin Eye Res 25:296–324

    Article  PubMed  Google Scholar 

  10. Moschovakis A et al (2004) Oculomotor areas of the primate frontal lobes: a transneuronal transfer of rabies virus and (14C)-2-deoxyglucose functional imaging study. J Neurosci 24:5726–5740

    Article  PubMed  CAS  Google Scholar 

  11. Rosano C et al (2002) Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation. Cereb Cortex 12:107–115

    Article  PubMed  Google Scholar 

  12. Lynch JC, Tian JR (2005) Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res 151:461–501

    Article  PubMed  CAS  Google Scholar 

  13. Mercier B, Legg C, Glickstein M (1990) Basal ganglia and cerebellum receive different somatosensory information in rats. Proc Natl Acad Sci U S A 87:4388–4392

    Article  PubMed  CAS  Google Scholar 

  14. Glickstein M, Kralj-Hans I, Legg C, Mercier B, Ramna-Rayan M, Vaudano E (1992) The organisation of fibres within the rat basis pedunculi. Neurosci Lett 135:75–79

    Article  PubMed  CAS  Google Scholar 

  15. Legg C, Mercier B, Glickstein M (1989) Corticopontine projection in the rat: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 286:427–441

    Article  PubMed  CAS  Google Scholar 

  16. Glickstein M, May J, Mercier B (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359

    Article  PubMed  CAS  Google Scholar 

  17. Glickstein M, May J, Buchbinder S (1997) Visual control of the arm, the wrist, and the fingers; Pathways through the brain. Neuropsychologia 36:981–1001

    Article  Google Scholar 

  18. Gibson A, Baker J, Mower G, Glickstein M (1978) Corticopontine cells in area 18 of the cat. J Neurophysiol 41:484–495

    PubMed  CAS  Google Scholar 

  19. Baker J, Gibson A, Glickstein M, Stein J (1976) Visual cells in the pontine nuclei of the cat. J Physiol 255:415–433

    PubMed  CAS  Google Scholar 

  20. Classen J et al (1995) Subcortical origin of visuo-motor apraxia. Brain 118:1365–1374

    Article  PubMed  Google Scholar 

  21. Jenkinson E, Glickstein M (2000) Whiskers, barrels, and cortical efferent pathways in gap-crossing by rats. J. Neurophysiol 84:1781–1789

    PubMed  CAS  Google Scholar 

  22. Ugolini G, Kuypers HG (1986) Collaterals of corticospinal and pyramidal fibres to the pontine grey demonstrated by a new application of the fluorescent fibre labelling technique. Brain Res 365:211–227

    Article  PubMed  CAS  Google Scholar 

  23. Middleton F, Strick P (2001) Cerebellar projections to prefrontal cortex of the primate. J Neurosci 21:700–712

    PubMed  CAS  Google Scholar 

  24. May P et al (1990) Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neurosci 36:305–324

    Article  CAS  Google Scholar 

  25. Sakai S, Inase M, Tanji J (1996) Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labelling study. J Comp Neurol 368:215–228

    Article  PubMed  CAS  Google Scholar 

  26. Ramnani N et al (2006) The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from macaque monkeys and human. Cereb Cortex 16:811–818

    Article  PubMed  Google Scholar 

  27. Glickstein M, Waller J, Baizer J, Brown B, Timmann D (2005) Cerebellum lesions and finger use. Cerebellum 4:189–197

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Glickstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glickstein, M., Doron, K. Cerebellum: Connections and Functions. Cerebellum 7, 589–594 (2008). https://doi.org/10.1007/s12311-008-0074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0074-4

Keywords

Navigation