Skip to main content

Cerebellar Modules and Networks Involved in Locomotion Control

  • Chapter
  • First Online:
Essentials of Cerebellum and Cerebellar Disorders

Abstract

Modern neuroscience is paving the way for new insight into cerebellar functions including the control of cognitive, autonomic and emotional processes. Yet, how the cerebellum coordinates basic motor behavior such as locomotion is still only partly understood. Here, we will review the role of the cerebellum in locomotion from the perspective of neuro-anatomical and clinical reports as well as cell-specific rodent studies. Evidence has been emerging that different modules and networks exert synergistic roles in the preparation, performance, adaptation and consolidation of locomotion, highlighting their contribution to interlimb coordination and the accuracy, efficiency and regularity of locomotion patterns.

#Author contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  • Aoki S, Sato Y, Yanagihara D (2013) Lesion in the lateral cerebellum specifically produces overshooting of the toe trajectory in leading forelimb during obstacle avoidance in the rat. J Neurophysiol 110:1511–1524

    Article  PubMed  Google Scholar 

  • Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16:645–649

    Article  CAS  PubMed  Google Scholar 

  • Chambers WW, Sprague JM (1955) Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. AMA Arch Neurol Psychiatry 74:653–680

    Article  CAS  PubMed  Google Scholar 

  • De Zeeuw CI, Hoebeek FE, Bosman LW, Schonewille M, Witter L, Koekkoek SK (2011) Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 12:327–344

    Article  PubMed  Google Scholar 

  • Galliano E, Gao Z, Schonewille M, Todorov B, Simons E, Pop AS, D’Angelo E, van den Maagdenberg AM, Hoebeek FE, De Zeeuw CI (2013) Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. Cell Rep 3:1239–1251

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, van Beugen BJ, De Zeeuw CI (2012) Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 13:619–635

    Article  CAS  PubMed  Google Scholar 

  • Gerrits NM, Voogd J, Nas WS (1985) Cerebellar and olivary projections of the external and rostral internal cuneate nuclei in the cat. Exp Brain Res 57:239–255

    Article  CAS  PubMed  Google Scholar 

  • Horn KM, Pong M, Gibson AR (2010) Functional relations of cerebellar modules of the cat. J Neurosci 30:9411–9423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D (2008) The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 131:2913–2927

    Article  CAS  PubMed  Google Scholar 

  • Konczak J, Schoch B, Dimitrova A, Gizewski E, Timmann D (2005) Functional recovery of children and adolescents after cerebellar tumour resection. Brain 128:1428–1441

    Article  PubMed  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1999) Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82:290–300

    CAS  PubMed  Google Scholar 

  • Morton SM, Bastian AJ (2004) Cerebellar control of balance and locomotion. Neuroscientist 10:247–259

    Article  PubMed  Google Scholar 

  • Morton SM, Bastian AJ (2007) Mechanisms of cerebellar gait ataxia. Cerebellum 6:79–86

    Article  PubMed  Google Scholar 

  • Pijpers A, Winkelman BH, Bronsing R, Ruigrok TJ (2008) Selective impairment of the cerebellar C1 module involved in rat hind limb control reduces step-dependent modulation of cutaneous reflexes. J Neurosci 28:2179–2189

    Article  CAS  PubMed  Google Scholar 

  • Ruigrok TJ, Pijpers A, Goedknegt-Sabel E, Coulon P (2008) Multiple cerebellar zones are involved in the control of individual muscles: a retrograde transneuronal tracing study with rabies virus in the rat. Eur J Neurosci 28:181–200

    Google Scholar 

  • Schoch B, Dimitrova A, Gizewski ER, Timmann D (2006) Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage 30:36–51

    Article  CAS  PubMed  Google Scholar 

  • Schonewille M, Gao Z, Boele HJ, Veloz MF, Amerika WE, Simek AA, De Jeu MT, Steinberg JP, Takamiya K, Hoebeek FE, Linden DJ, Huganir RL, De Zeeuw CI (2011) Reevaluating the role of LTD in cerebellar motor learning. Neuron 70:43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroobants S, Gantois I, Pooters T, D’Hooge R (2013) Increased gait variability in mice with small cerebellar cortex lesions and normal rotarod performance. Behav Brain Res 241:32–37

    Article  PubMed  Google Scholar 

  • Thach WT, Goodkin HP, Keating JG (1992) The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci 15:403–442

    Article  CAS  PubMed  Google Scholar 

  • Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, Dortland B, Wellershaus K, Degen J, Deuchars J, Fuchs EC, Monyer H, Willecke K, De Jeu MT, De Zeeuw CI (2008) Role of olivary electrical coupling in cerebellar motor learning. Neuron 58:599–612

    Article  Google Scholar 

  • Vinueza Veloz MF, Zhou K, Bosman LW, Potters JW, Negrello M, Seepers RM, Strydis C, Koekkoek SK, De Zeeuw CI (2014) Cerebellar control of gait and interlimb coordination. Brain Struct Funct 220:3513–3536

    Article  PubMed  PubMed Central  Google Scholar 

  • Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21:370–375

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Eidelberg E (1983) Recovery of locomotor function in cats after localized cerebellar lesions. Brain Res 273:121–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Organization for Medical Sciences (ZonMw), Life Sciences (ALW), Senter (Neuro-Bsik) and ERC-adv of the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris I. De Zeeuw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

da Silva Matos, C., Vinueza Veloz, M.F., Ruigrok, T.J.H., De Zeeuw, C.I. (2016). Cerebellar Modules and Networks Involved in Locomotion Control. In: Gruol, D., Koibuchi, N., Manto, M., Molinari, M., Schmahmann, J., Shen, Y. (eds) Essentials of Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-24551-5_37

Download citation

Publish with us

Policies and ethics