Skip to main content
Log in

Lesion-Symptom Mapping of the Human Cerebellum

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

High-resolution structural magnetic resonance imaging (MRI) has become a powerful tool in human cerebellar lesion studies. Structural MRI is helpful to analyse the localisation and extent of cerebellar lesions and to determine possible extracerebellar involvement. Functionally meaningful correlations between a cerebellar lesion site and behavioural data can be obtained both in subjects with degenerative as well as focal cerebellar disorders. In this review, examples are presented which demonstrate that MRI-based lesion-symptom mapping is helpful to study the function of cerebellar cortex and cerebellar nuclei. Behavioural measures were used which represent two main areas of cerebellar function, that is, motor coordination and motor learning. One example are correlations with clinical data which are in good accordance with the known functional compartmentalisation of the cerebellum in three sagittal zones: In patients with cerebellar cortical degeneration ataxia of stance and gait was correlated with atrophy of the medial (and intermediate) cerebellum, oculomotor disorders with the medial, dysarthria with the intermediate and limb ataxia with atrophy of the intermediate and lateral cerebellum. Similar findings were obtained in patients with focal lesions. In addition, in patients with acute focal lesions, a somatotopy in the superior cerebellar cortex was found which is in close relationship to animal data and functional MRI data in healthy control subjects. Finally, comparison of data in patients with acute and chronic focal lesions revealed that lesion site appears to be critical for motor recovery. Recovery after lesions to the nuclei of the cerebellum was less complete. Another example which extended knowledge about functional localisation within the cerebellum is classical conditioning of the eyeblink response, a simple form of motor learning. In healthy subjects, learning rate was related to the volume of the cortex of the posterior cerebellar lobe. In patients with focal cerebellar lesions, acquisition of eyeblink conditioning was significantly reduced in lesions including the cortex of the superior posterior lobe, but not the inferior posterior lobe. Disordered timing of conditioned eyeblink responses correlated with lesions of the anterior lobe. Findings are in good agreement with the animal literature. Different parts of the cerebellar cortex may be involved in acquisition and timing of conditioned eyeblink responses in humans. These examples demonstrate that MRI-based lesion-symptom mapping is helpful to study the contribution of functionally relevant cerebellar compartments in motor control and recovery in patients with cerebellar disease. In addition, information about the function of cerebellar cortex and nuclei can be gained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rorden C, Karnath HO (2004) Using human brain lesions to infer function: a relic from a past era in the fMRI age. Nat Rev Neurosci 5:813–819, Review

    Article  PubMed  Google Scholar 

  2. Makris N, Schlerf JE, Hodge SM, Haselgrove C, Albaugh MD, Seidman LJ, Rauch SL, Harris G, Biederman J, Caviness VS, Kennedy DN, Schmahmann JD (2005) MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage 25:1146–1160

    Article  PubMed  Google Scholar 

  3. Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A, Böring D, Thilmann AF, Forsting M, Diener HC, Timmann D (2003) Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain 126:71–94

    Article  PubMed  CAS  Google Scholar 

  4. Dimitrova A, Weber J, Redies C, Kindsvater K, Maschke M, Kolb FP, Forsting M, Diener HC, Timmann D (2002) MRI atlas of the human cerebellar nuclei. Neuroimage 17:240–255

    Article  PubMed  CAS  Google Scholar 

  5. Dimitrova A, Zeljko D, Schwarze F, Maschke M, Gerwig M, Frings M, Beck A, Aurich V, Forsting M, Timmann D (2006) Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage 30:12–25

    Article  PubMed  CAS  Google Scholar 

  6. Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138

    Article  PubMed  Google Scholar 

  7. Deoni SC, Catani M (2007) Visualization of the deep cerebellar nuclei using quantitative T1 and rho magnetic resonance imaging at 3 Tesla. Neuroimage 37:1260–1266

    Article  PubMed  Google Scholar 

  8. Rorden C, Karnath HO, Bonilha L (2007) Improving lesion-symptom mapping. J Cogn Neurosci 19:1081–1088

    Article  PubMed  Google Scholar 

  9. Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT, Dronkers NF (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6:448–450

    PubMed  CAS  Google Scholar 

  10. Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, Kock N, Steinlechner S, Nagel M, Zühlke C, Nitschke MF, Brockmann K, Klein C, Rolfs A, Binkofski F (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129:2341–2345

    Article  PubMed  CAS  Google Scholar 

  11. Shallice T (1988) From neuropsychology to mental structure. Cambridge University Press, Cambridge

    Google Scholar 

  12. Richter S, Dimitrova A, Maschke M, Gizewski E, Beck A, Aurich V, Timmann D (2005) Degree of cerebellar ataxia correlates with three-dimensional MRI-based cerebellar volume in pure cerebellar degeneration. Eur Neurol 54:23–27

    Article  PubMed  Google Scholar 

  13. Brandauer B, Hermsdörfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, Timmann D (2008) Impairments of prehension kinematics and grasping faces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol (in press)

  14. Thach WT, Kane SA, Mink JW, Goodkin HP (1992) Cerebellar output, multiple maps and modes of control in movement coordination. In: Llinas R, Sotelo C (eds) The cerebellum revisited. Springer, New York, pp 283–300

    Google Scholar 

  15. Urban PP, Marx J, Hunsche S, Gawehn J, Vucurevic G, Wicht S, Massinger C, Stoeter P, Hopf HC (2003) Cerebellar speech representation: lesion topography in dysarthria as derived from cerebellar ischemia and functional magnetic resonance imaging. Arch Neurol 60:965–972

    Article  PubMed  Google Scholar 

  16. Voogd J, Barmack NH (2005) Oculomotor cerebellum. Prog Brain Res 151:231–268

    Article  PubMed  Google Scholar 

  17. Konczak J, Schoch B, Dimitrova A, Gizewski E, Timmann D (2005) Functional recovery of children and adolescents after cerebellar tumour resection. Brain 128:1428–1441

    Article  PubMed  Google Scholar 

  18. Ilg W, Giese MA, Gizewski ER, Schoch B, Timmann D (2008) The influence of focal cerebellar lesions on the control and adaptation of gait. Brain (in press)

  19. Schoch B, Dimitrova A, Gizewski ER, Timmann D (2006) Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage 30:36–51

    Article  PubMed  CAS  Google Scholar 

  20. Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13:55–57

    Article  PubMed  CAS  Google Scholar 

  21. Eckmiller R, Westheimer G (1983) Compensation of oculomotor deficits in monkeys with neonatal cerebellar ablations. Exp Brain Res 49:315–326

    Article  PubMed  CAS  Google Scholar 

  22. Gerwig M, Kolb FP, Timmann D (2007) The involvement of the human cerebellum in eyeblink conditioning. Invited review. Cerebellum 6:38–57

    Article  PubMed  CAS  Google Scholar 

  23. Christian KM, Thompson RF (2003) Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem 10:427–455

    Article  PubMed  Google Scholar 

  24. De Zeeuw CI, Yeo CH (2005) Time and tide in cerebellar memory formation. Curr Opin Neurobiol 15:667–667

    Article  PubMed  Google Scholar 

  25. Dimitrova A, Gerwig M, Brol B, Gizewski ER, Forsting M, Beck A, Aurich V, Kolb FP, Timmann D (2008) Correlation of cerebellar volume with eyeblink conditioning in healthy subjects and in patients with cerebellar cortical degeneration. Brain Res 1198:73–78

    Article  PubMed  CAS  Google Scholar 

  26. Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D (2005) Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci 25:3919–3931

    Article  PubMed  CAS  Google Scholar 

  27. Attwell PJ, Rahman S, Yeo CH (2001) Acquisition of eyeblink conditioning is critically dependent on normal function in cerebellar cortical lobule HVI. J Neurosci 21:5715–5722

    PubMed  CAS  Google Scholar 

  28. Perrett SP, Ruiz BP, Mauk MD (1993) Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci 13:1708–1718

    PubMed  CAS  Google Scholar 

  29. Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timmann D, Honnorat J, Nighoghossian N, Manyam B (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–201

    Article  PubMed  CAS  Google Scholar 

  30. Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC (2000) MRI atlas of the human cerebellum. Academic Press, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Timmann.

Additional information

Supported by DFG TI 239/5-2, TI 239/8-1 and HE 3592/4-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmann, D., Brandauer, B., Hermsdörfer, J. et al. Lesion-Symptom Mapping of the Human Cerebellum. Cerebellum 7, 602–606 (2008). https://doi.org/10.1007/s12311-008-0066-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0066-4

Keywords

Navigation