Skip to main content

Cerebellar Control of Eye Movements

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

One of the earliest consensuses reached by cerebellar physiologists is that an intact cerebellum is necessary for optimal motor performance. But how and where motor commands get adjusted to the defies of a perceptual error due to adversities in motor execution remains elusive. Oculomotor physiologists have tackled these questions using an exemplar model for motor control, eye movements, and a multifaceted approach consisting of correlation of structure and function, effects of lesions, neuronal recordings, and modeling. This chapter reviews the literature and provides evidence that the cerebellum exerts control over all types of eye movements and that this control is distributed. In addition to the online control of eye movements, the cerebellum plays a key role in motor learning. Unifying theories of motor control suggest that the cerebellum is part of the neuronal circuit responsible for constructing predictions of the consequences of the motor command signal and predictions that are necessary for fine movement control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aschoff JC, Cohen B (1971) Changes in saccadic eye movements produced by cerebellar cortical lesions. Exp Neurol 32:123–133

    CAS  PubMed  Google Scholar 

  • Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P (1999) Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci 19:10931–10939

    CAS  PubMed  Google Scholar 

  • Barmack NH, Yakhnitsa V (2008) Functions of interneurons in mouse cerebellum. J Neurosci 28:1140–1152

    CAS  PubMed  Google Scholar 

  • Belton T, McCrea RA (2000) Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation. J Neurophysiol 84:1599–1613

    CAS  PubMed  Google Scholar 

  • Blazquez PM, Yakusheva TA (2015) GABA-A Inhibition Shapes the Spatial and Temporal Response Properties of Purkinje Cells in the Macaque Cerebellum. Cell Rep 11(7):1043–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blazquez PM, Hirata Y, Heiney SA, Green AM, Highstein SM (2003) Cerebellar signatures of vestibulo-ocular reflex motor learning. J Neurosci 23:9742–9751

    CAS  PubMed  Google Scholar 

  • Blazquez PM, Hirata Y, Highstein SM (2005) Chronic changes in inputs to dorsal Y neurons accompany VOR motor learning. J Neurophysiol 95:1812–1825

    PubMed  Google Scholar 

  • Blazquez PM, Davis-Lopez de Carrizosa MA, Heiney SA, Highstein SM (2007) Neuronal substrates of motor learning in the velocity storage generated during optokinetic stimulation in the squirrel monkey. J Neurophysiol 97:1114–1126

    PubMed  Google Scholar 

  • Brodal P, Brodal A (1981) The olivocerebellar projection in the monkey: experimental studies with the method of retrograde tracing of horseradish peroxidase. J Comp Neurol 201:375–393

    CAS  PubMed  Google Scholar 

  • Brodal A, Brodal P (1985) Observations on the secondary vestibulocerebellar projections in the macaque monkey. Exp Brain Res 58:62–74

    CAS  PubMed  Google Scholar 

  • Brodal A, Kawamura K (1980) Olivocerebellar projection: a review. Adv Anat Embryol Cell Biol 64:1–140

    Google Scholar 

  • Buttner U, Waespe W (1984) Purkinje cell activity in the primate flocculus during optokinetic stimulation, smooth pursuit eye movements and VOR-suppression. Exp Brain Res 55:97–104

    CAS  PubMed  Google Scholar 

  • Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278:29–51

    CAS  PubMed  Google Scholar 

  • Catz N, Thier P (2007) Neural control of saccadic eye movements. Dev Ophthalmol 40:52–75

    PubMed  Google Scholar 

  • Catz N, Dicke PW, Thier P (2005) Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol 15:2179–2189

    CAS  PubMed  Google Scholar 

  • Crowder NA, Winship IR, Wylie DR (2000) Topographic organization of inferior olive cells projecting to translational zones in the vestibulocerebellum of pigeons. J Comp Neurol 419:87–95

    CAS  PubMed  Google Scholar 

  • Dai M, Raphan T, Cohen B (1991) Spatial orientation of the vestibular system: dependence of optokinetic after-nystagmsus on gravity. J Neurophysiol 66:1422–1439

    CAS  PubMed  Google Scholar 

  • Dash S, Dicke PW, Their P (2013) A vermal Purkinje cell simple spike population response encodes the changes in eye movement kinematics due to smooth pursuit adaptation. Front Syst Neurosci 7:3

    PubMed  PubMed Central  Google Scholar 

  • De Zeeuw CI, Hansel C, Bian F, Koekkoek SK, Van Alphen AM, Linden DJ, Oberdick J (1998) Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20:495–508

    PubMed  Google Scholar 

  • El-Shamayleh Y, Kojima Y, Soetedjo R, Horwitz GD (2017) Selective optogenetic control of Purkinje cells in monkey cerebellum. Neuron 95:51–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs AF, Robinson FR, Straube A (1993) Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol 70:1723–1740

    CAS  PubMed  Google Scholar 

  • Fuchs AF, Robinson FR, Straube A (1994) Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I. Neuronal activity. J Neurophysiol 72:2714–2728

    CAS  PubMed  Google Scholar 

  • Fujikado T, Noda H (1987) Saccadic eye movements evoked by microstimulation of lobule VII of the cerebellar vermis of macaque monkeys. J Physiol 394:573–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghasia FF, Angelaki DE (2005) Do motoneurons encode the noncommutativity of ocular rotations? Neuron 47:281–293

    CAS  PubMed  Google Scholar 

  • Ghasia FF, Meng H, Angelaki DE (2008) Neural correlates of forward and inverse models for eye movements: evidence from three-dimensional kinematics. J Neurosci 28:5082–5087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goffart L, Chen LL, Sparks DL (2004) Deficits in saccades and fixation during muscimol inactivation of the caudal fastigial nucleus in the rhesus monkey. J Neurophysiol 92:3351–3367

    PubMed  Google Scholar 

  • Groves AK (2010) The challenge of hair cell regeneration. Exp Biol Med (Maywood) 235:434–446

    CAS  Google Scholar 

  • Haar S, Givon-Mayo R, Barmack NH, Yakhnitsa V, Donchin O (2015) Spontaneous activity does not predict morphological type in cerebellar interneurons. J Neurosci 35(4):1432–1442

    CAS  PubMed  Google Scholar 

  • Heine SA, Highstein SM, Blazquez PM (2010) Golgi cells operate as state-specific temporal filters at the input stage of the cerebellar cortex. J Neurosci 30:17004–17014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R (2015) Encoding of action by the Purkinje cells of the cerebellum. Nature 526(7573):439–442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirata Y, Highstein SM (2001) Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells. J Neurophysiol 85(5):2267–2288

    CAS  PubMed  Google Scholar 

  • Holmes (1939) The cerebellum of man. Brain 62:1–30

    Google Scholar 

  • Hosy E, Piochon C, Teuling E, Rinaldo L, Hansel C (2011) SK2 channel expression and function in cerebellar purkinje cells. J Physiol 589:3433–3440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ilg UJ, Thier P (2008) The neural basis of smooth pursuit eye movements in the rhesus monkey brain. Brain Cogn 68(3):229–240

    PubMed  Google Scholar 

  • Jörntell H (2016) Cerebellar synaptic plasticity and the credit assignment problem. Cerebellum 15(2):104–111

    PubMed  Google Scholar 

  • Kassardjian CD, Tan YF, Chung JY, Heskin R, Peterson MJ, Broussard DM (2005) The site of a motor memory shifts with consolidation. J Neurosci 25:7979–7985

    CAS  PubMed  Google Scholar 

  • Kojima Y, Soetedjo R, Fuchs AF (2010) Effects of GABA agonist and antagonist injections into the oculomotor vermis on horizontal saccades. Brain Res 1366:93–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krauzlis RJ, Miles FA (1998) Role of the oculomotor vermis in generating pursuit and saccades: effects of microstimulation. J Neurophysiol 80:2046–2062

    CAS  PubMed  Google Scholar 

  • Kuki Y, Hirata Y, Blazquez PM, Heiney SA, Highstein SM (2004) Memory retention of vestibuloocular reflex motor learning in squirrel monkeys. Neuroreport 15:1007–1011

    CAS  PubMed  Google Scholar 

  • Langer T, Fuchs AF, Chubb MC, Scudder CA, Lisberger SG (1985a) Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. J Comp Neurol 235(1):26–37

    CAS  PubMed  Google Scholar 

  • Langer T, Fuchs AF, Scudder CA, Chubb MC (1985b) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25

    CAS  PubMed  Google Scholar 

  • Laurens J, Heiney SA, Kim G, Blazquez PM (2013a) Cerebellar cortex granular layer interneurons in the macaque monkey are functionally driven by mossy fiber pathways through net excitation or inhibition. PLoS One 8(12):e82239

    PubMed  PubMed Central  Google Scholar 

  • Laurens J, Meng H, Angelaki DE (2013b) Neural representation of orientation relative to gravity in the macaque cerebellum. Neuron 80(6):1508–1518

    CAS  PubMed  Google Scholar 

  • Leung HC, Suh M, Kettner RE (2000) Cerebellar flocculus and paraflocculus Purkinje cell activity during circular pursuit in monkey. J Neurophysiol 83:13–30

    CAS  PubMed  Google Scholar 

  • Lisberger SG (1994) Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning. J Neurophysiol 72:974–998

    CAS  PubMed  Google Scholar 

  • Lisberger SG, Pavelko TA, Bronte-Stewart HM, Stone LS (1994) Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus. J Neurophysiol 72:954–973

    CAS  PubMed  Google Scholar 

  • McLaughlin S (1967) Parametric adjustment in saccadic eye movements. Percept Psychophys 2:359–362

    Google Scholar 

  • Medina JF, Lisberger SG (2008) Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci 11:1185–1192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng H, Laurens J, Blazquez PM, Angelaki DE (2015) In vivo properties of cerebellar interneurons in the macaque caudal vestibular vermis. J Physiol 593(1):321–330

    CAS  PubMed  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a smith predictor? J Mot Behav 25:203–216

    CAS  PubMed  Google Scholar 

  • Miles FA, Fuller JH, Braitman DJ, Dow BM (1980) Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J Neurophysiol 43:1437–1476

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Sekerková G, Martina M (2011) The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res Rev 66:220–245

    CAS  PubMed  Google Scholar 

  • Nagao S (1992) Different roles of flocculus and ventral paraflocculus for oculomotor control in the primate. Neuroreport 3:13–16

    CAS  PubMed  Google Scholar 

  • Newlands SD, Vrabec JT, Purcell IM, Stewart CM, Zimmerman BE, Perachio AA (2003) Central projections of the saccular and utricular nerves in macaques. J Comp Neurol 466:31–47

    PubMed  Google Scholar 

  • Noda H, Fujikado T (1987) Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. J Neurophysiol 58:359–378

    CAS  PubMed  Google Scholar 

  • Noda H, Sugita S, Ikeda Y (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 302:330–348

    CAS  PubMed  Google Scholar 

  • Ono S, Mustari MJ (2008) Role of the MST-DLPN pathway in smooth pursuit adaptation. Prog Brain Res 171:161–165

    PubMed  Google Scholar 

  • Partsalis AM, Zhang Y, Highstein SM (1995) Dorsal Y group in the squirrel monkey. II. Contribution of the cerebellar flocculus to neuronal responses in normal and adapted animals. J Neurophysiol 73(2):632–50

    Google Scholar 

  • Pastor AM, de la Cruz RR, Baker R (1994) Cerebellar role in adaptation of the goldfish vestibuloocular reflex. J Neurophysiol 72:1383–1394

    CAS  PubMed  Google Scholar 

  • Pastor AM, de la Cruz RR, Baker R (1997) Characterization of Purkinje cells in the goldfish cerebellum during eye movement and adaptive modification of the vestibulo-ocular reflex. Prog Brain Res 114:358–361

    Google Scholar 

  • Prsa M, Dicke PW, Thier P (2010) The absence of eye muscle fatigue indicates that the nervous system compensates for non-motor disturbances of oculomotor function. J Neurosci 30:15834–15842

    CAS  PubMed  Google Scholar 

  • Raghava RT Lisberger SG (2017) Responses of Purkinje cells in the oculomotor vermis of monkeys during smooth pursuit eye movements and saccades: comparison with floccular complex. J Neurophysiol 118:981–1001

    Google Scholar 

  • Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG (2002) Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol 87:912–924. 49 Cerebellar Control of Eye Movements 1171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raphan T, Cohen B (1989) Organizational principles of velocity storage in three dimensions. The effect of gravity on crosscoupling of optokinetic after-nystagmus. Ann N Y Acad Sci 545:74–92

    Google Scholar 

  • Rashbass C (1961) The relationship between saccadic and smooth tracking eye movements. J Physiol 159:326–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robberechts Q, Wijnants M, Giugliano M, De Schutter E (2010) Long-term depression at parallel fiber to Golgi cell synapses. J Neurophysiol 104:3413–3423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson FR, Fuchs AF, Noto CT (2002) Cerebellar influences on saccade plasticity. Ann N Y Acad Sci 956:155–163

    CAS  PubMed  Google Scholar 

  • Ron S, Robinson DA (1973) Eye movements evoked by cerebellar stimulation in the alert monkey. J Neurophysiol 36:1004–1022

    CAS  PubMed  Google Scholar 

  • Ruigrok TJH, Hensbroek RA, Simpson JI (2011) Spontaneous activity signatures of morphologically identified interneurons in the vestibulocerebellum. J Neurosci 31:712–724

    CAS  PubMed  Google Scholar 

  • Sato Y, Kawasaki T (1991) Identification of the Purkinje cell/climbing fiber zone and its target neurons responsible for eye-movement control by the cerebellar flocculus. Brain Res Rev 16:39–64

    CAS  PubMed  Google Scholar 

  • Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365:50–52

    CAS  PubMed  Google Scholar 

  • Simpson JI (2011) Crossing zones in the vestibulocerebellum: a commentary. Cerebellum 10:515–522

    PubMed  Google Scholar 

  • Simpson JI, Van der Steen J, Tan J, Graf W, Leonard CS (1989) Representations of ocular rotations in the cerebellar flocculus of the rabbit. Prog Brain Res 80:213–223

    CAS  PubMed  Google Scholar 

  • Simpson JI, Belton T, Suh M, Winkelman B (2002) Complex spike activity in the flocculus signals more than the eye can see. Ann N Y Acad Sci 978:232–236

    CAS  PubMed  Google Scholar 

  • Soetedjo R, Fuchs AF (2006) Complex spike activity of purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. J Neurosci 26:7741–7755

    CAS  PubMed  Google Scholar 

  • Stone LS, Lisberger SG (1990) Visual responses of purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes. J Neurophysiol 63:1262–1275

    CAS  PubMed  Google Scholar 

  • Straka H, Beck JC, Pastor AM, Baker R (2006) Morphology and physiology of the cerebellar vestibulolateral lobe pathways linked to oculomotor function in the goldfish. J Neurophysiol 96:1963–1980

    PubMed  Google Scholar 

  • Sun Z, Smilgin A, Junker M, Dicke PW, Their P (2017) The same oculomotor vermal Purkinje cells encode the different kinematics of saccades and of smooth pursuit eye movements. Sci Rep 7:40613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki DA, Keller EL (1988) The role of the posterior vermis of monkey cerebellum in smooth-pursuit eye movement control. I. Eye and head movement-related activity. J Neurophysiol 59:1–18

    CAS  PubMed  Google Scholar 

  • Suzuki DA, Noda H, Kase M (1981) Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J Neurophysiol 46:1120–1139

    CAS  PubMed  Google Scholar 

  • Takagi M, Zee DS, Tamargo RJ (1998) Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol 80:1911–1931

    CAS  PubMed  Google Scholar 

  • Takagi M, Zee DS, Tamargo RJ (2000) Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. J Neurophysiol 83:2047–2062

    CAS  PubMed  Google Scholar 

  • Takeichi N, Kaneko CR, Fuchs AF (2005) Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation. J Neurophysiol 94:1938–1951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thier P, Dicke PW, Haas R, Thielert C-D, Catz N (2002) The role of the oculomotor vermis in the control of saccadic eye movements. Ann N Y Acad Sci 978:50–62

    PubMed  Google Scholar 

  • van Alphen AM, De Zeeuw CI (2002) Cerebellar LTD facilitates but is not essential for long-term adaptation of the vestibulo-ocular reflex. Eur J Neurosci 16(3):486–490

    PubMed  Google Scholar 

  • Van Dijck G, Van Hulle MM, Heiney SA, Blazquez PM, Meng H, Angelaki DE, Arenz A, Margrie TW, Mostofi A, Edgley S, Bengtsson F, Ekerot CF, Jörntell H, Dalley JW, Holtzman T (2013) Probabilistic identification of cerebellar cortical neurones across species. PLoS One 8(3)

    Google Scholar 

  • Waespe W, Cohen B, Raphan T (1983) Role of the flocculus and paraflocculus in optokinetic nystagmus and visual-vestibular interactions: effects of lesions. Exp Brain Res 50:9–33

    CAS  PubMed  Google Scholar 

  • Wearne S, Raphan T, Cohen B (1998) Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula. J Neurophysiol 79:2690–2715

    CAS  PubMed  Google Scholar 

  • Whitworth RH Jr, Haines DE, Patrick GW (1983) The inferior olive of a prosimian primate, Galago senegalensis. II. Olivocerebellar projections to the vestibulo-cerebellum. J Comp Neurol 219:228–240

    PubMed  Google Scholar 

  • Wylie DR, De Zeeuw CI, DiGiorgi PL, Simpson JI (1994) Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349:448–463

    CAS  PubMed  Google Scholar 

  • Wylie DR, Brown MR, Winship IR, Crowder NA, Todd KG (2003) Zonal organization of the vestibulocerebellum in pigeons (Columba livia): III. Projections of the translation zones of the ventral uvula and nodulus. J Comp Neurol 465:179–194

    PubMed  Google Scholar 

  • Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54:973–985

    CAS  PubMed  Google Scholar 

  • Yakusheva T, Blazquez PM, Angelaki DE (2008) Frequency-selective coding of translation and tilt in macaque cerebellar nodulus and uvula. J Neurosci 28:9997–10009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada J, Noda H (1987) Afferent and efferent connections of the oculomotor cerebellar vermis in the macaque monkey. J Comp Neurol 265:224–241

    CAS  PubMed  Google Scholar 

  • Yang Y, Lisberger SG (2014) Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature 510(7506):529–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zee DS, Yamazaki A, Butler PH, Gucer G (1981) Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol 46:878–899

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support from NIH-NINDS grant RO1DC016231 (PMB) and MICINN-FEDER grant BFU2015-64515-P (AMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo M. Blazquez .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Blazquez, P.M., Pastor, A.M. (2019). Cerebellar Control of Eye Movements. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_49-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_49-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics