Skip to main content
Log in

Functional interactions between the cerebellum and the premotor cortex for error correction during the slow rate force production task: an fMRI study

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Although neuroimaging studies indicate that functional magnetic resonance imaging (fMRI) signal changes in the cerebellum (CB) during the performance of a target movement reflect functions of error detection and correction, it is not well known how the CB intervenes in task-demanded movement attributes during automated on-line movement, i.e., how the CB simultaneously coordinates movement rate and error correction. The present study was undertaken to address this issue by recording fMRI signals during the performance of a task at two different movement rates (0.4 and 0.8 Hz). The results showed that movement errors increased with increasing movement rates. We also demonstrated that activation of the left CB increased with decreasing movement rates, whereas activation of the ipsilateral (right) premotor cortex (PMC) increased with increasing movement rates. Furthermore, there were significant relationships between individual movement errors and left CB activation at both movement rates, but these relationships were not observed in the ipsilateral PMC. Taken together, it is suggested that during the performance of automated and well-controlled slow force production tasks, the interactions between cortical (right PMC) and subcortical (left CB) motor circuits, i.e., a functional dissociation between PMC and CB, is exclusively dedicated to controlling movement rate and error correction. In particular, the present results showing significant relationships between individual force-control errors and CB activation might reflect functional differences of an individual’s internal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen G, Buxton RB, Wong EC, Courchesne E (1997) Attention activation of the cerebellum independent of motor involvement. Science 275:1940–1943

    Article  PubMed  CAS  Google Scholar 

  • Blinkenberg M, Bonde C, Holm S, Svarer C, Andersen J, Paulson OB, Law I (1996) Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. J Cereb Blood Flow Metab 16:794–803

    Article  PubMed  CAS  Google Scholar 

  • Boecker H, Lee A, Muhlau M, Ceballos-Baumann A, Ritzl A, Spilker ME, Marquart C, Hermsdorfer J (2005) Force level independent representations of predictive grip force-load force coupling: a PET activation study. Neuroimage 25:243–252

    Article  PubMed  CAS  Google Scholar 

  • Brett M, Christiff K, Cusack R, Lancaster J (2001) Using the Talairach atlas with the MNI template. Neuroimage 13:S85

    Article  Google Scholar 

  • Brett M, Anton J, Valabregue R, Poline J (2002) Region of interest analysis using an SPM toolbox [abstract]. Presented at HBM2002 16, 2002. Available on CD-ROM in Neuroimage

  • Deiber M, Honda M, Ibañez V, Sadato N, Hallett M (1999) Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. J Neurophysiol 81:3065–3077

    PubMed  CAS  Google Scholar 

  • Desmond JE, Gabrieli DE, Wagner AD, Ginier BL, Glover GH (1997) Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci 17:9675–9685

    PubMed  CAS  Google Scholar 

  • Desmurget M, Grafton ST, Vindras P, Grea H, Turner RS (2004) The basal ganglia network mediates the planning of movement amplitude. Eur J Neurosci 19:2871–2880

    Article  PubMed  CAS  Google Scholar 

  • Dimitrova A, Zeljko D, Schwarze F, Maschke M, Gerwig M, Frings M, Beck A, Aurich V, Forsting M, Timmann D (2006) Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage 30:12–25

    Article  PubMed  CAS  Google Scholar 

  • Doya K (1999) What are the computations of the cerebellum, the basal ganglia, and the cerebral cortex? Neural Netw 12:961–974

    Article  PubMed  Google Scholar 

  • Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10:732–739

    Article  PubMed  CAS  Google Scholar 

  • Galléa C, Graaf JB, Pailhous J, Bonnard M (2008) Error processing during online motor control depends on the response accuracy. Behav Brain Res 193:117–125

    Article  PubMed  Google Scholar 

  • Gao JH, Parson LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellar implicated in sensory acquisition and discrimination rather than motor control. Science 272:545–547

    Article  PubMed  CAS  Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    Article  PubMed  CAS  Google Scholar 

  • Imamizu H, Kuroda T, Miyauchi S, Yoshida T, Kawato M (2003) Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA 100:5461–5466

    Article  PubMed  CAS  Google Scholar 

  • Ivry RB, Fiez JA (2000) Cerebellar contributions to cognition and imagery. In: Gazzaniga MS (ed) The new cognitive neurosciences. MIT Press, Cambridge, pp 999–1011

    Google Scholar 

  • Jäncke L, Specht K, Mirzazade S, Loose R, Himmelbach M, Lutz K, Shah NJ (1998) A parametric analysis of the ‘rate effect’ in the sensorimotor cortex: a functional magnetic resonance imaging analysis in human subjects. Neurosci Lett 252:37–40

    Article  PubMed  Google Scholar 

  • Jäncke L, Specht K, Mirzazade S, Peters M (1999) The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: a functional magnetic resonance imaging study. Neuroimage 9:497–507

    Article  PubMed  Google Scholar 

  • Jenkins IH, Passingham RE, Brooks DJ (1997) The effect of movement frequency on cerebral activation: a positron emission tomography study. J Neurol Sci 151:195–205

    Article  PubMed  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  PubMed  CAS  Google Scholar 

  • Maruishi M, Tanaka Y, Muranaka H, Tsuji T, Ozawa Y, Imaizumi S, Miyatani M, Kawahara J (2004) Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study. Neuroimage 21:1604–1611

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Penhune VB, Doyon J (2005) Cerebellum and M1 interaction during early learning of timed motor sequences. Neuroimage 26:801–812

    Article  PubMed  CAS  Google Scholar 

  • Plamondon R, Alimi AM (1997) Speed/accuracy trade-offs in target-directed movements. Behav Brain Sci 20:279–349

    PubMed  CAS  Google Scholar 

  • Porter R, Lemon R (1993) Corticospinal function and voluntary movement. Clarendon Press, Oxford

    Google Scholar 

  • Rao SM, Binder JR, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, Lisk LM, Morris GL, Mueller WM, Estkowski LD, Wong EC, Haughton VM, Hyde JS (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318

    PubMed  CAS  Google Scholar 

  • Rao SM, Bandettini PA, Binder JR, Bobholz JA, Hammeke TA, Stein EA, Hyde JS (1996) Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. J Cereb Blood Flow Metab 16:1250–1254

    Article  PubMed  CAS  Google Scholar 

  • Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neural learning machine? Science 272:1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H (2003) Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. Neuroimage 18:731–739

    Article  PubMed  Google Scholar 

  • Sadato N, Ibanez V, Campbell G, Leonardo M, Hallett M (1996a) Frequency-dependent changes of regional cerebral blood flow during finger movements. J Cereb Blood Flow Metab 16:23–33

    Article  PubMed  CAS  Google Scholar 

  • Sadato N, Campbell G, Ibanez V, Deiber M, Hallett M (1996b) Complexity affects regional cerebral blood flow change during sequential finger movements. J Neurosci 16:2691–2700

    PubMed  CAS  Google Scholar 

  • Schlaug G, Sanes JN, Thangaraj V, Darby DG, Jäncke L, Edelman RR, Warach S (1996) Cerebral activation covaries with movement rate. Neuroreport 7:879–883

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Taniwaki T, Okayama A, Yoshiura T, Togao O, Nakamura Y, Yamasaki T, Ogata K, Shigeto H, Ohyagi Y, Kira J, Tobimatsu S (2006) Functional network of the basel ganglia and cerebellar motor loops in vivo: different activation patterns between self-initiated and externally triggered movements. Neuroimage 31:745–753

    Article  PubMed  Google Scholar 

  • Turner RS, Grafton ST, Votaw JR, Delong MR, Hoffman JM (1998) Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophysiol 80:2162–2176

    PubMed  CAS  Google Scholar 

  • Turner RS, Desmurget M, Grethe J, Crutcher MD, Grafton ST (2003) Motor subcircuits mediating the control of movement extent and speed. J Neurophysiol 90:3958–3966

    Article  PubMed  Google Scholar 

  • VanMeter JW, Maisog JM, Zeffiro TA, Hallett M, Herscovitch P, Rapoport SI (1995) Parametric analysis of functional neuroimages: application to a variable-rate motor task. Neuroimage 2:273–283

    Article  PubMed  CAS  Google Scholar 

  • Winstein CJ, Grafton ST, Pohl PS (1997) Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography. J Neurophysiol 77:1581–1594

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, Y., Fujimura, N., Tsuji, T. et al. Functional interactions between the cerebellum and the premotor cortex for error correction during the slow rate force production task: an fMRI study. Exp Brain Res 193, 143–150 (2009). https://doi.org/10.1007/s00221-008-1682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1682-4

Keywords

Navigation