Skip to main content

Advertisement

Log in

Application of chitosan on plant responses with special reference to abiotic stress

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Chitosan is a natural biopolymer modified from chitins which act as a potential biostimulant and elicitor in agriculture. It is non-toxic, biodegradable and biocompatible which favors potentially broad application. It enhances the physiological response and mitigates the adverse effect of abiotic stresses through stress transduction pathway via secondary messenger(s). Chitosan treatment stimulates photosynthetic rate, stomatal closure through ABA synthesis; enhances antioxidant enzymes via nitric oxide and hydrogen peroxide signaling pathways, and induces production of organic acids, sugars, amino acids and other metabolites which are required for the osmotic adjustment, stress signaling, and energy metabolism under stresses. It is also known to form complexes with heavy metals and used as tool for phytoremediation and bioremediation of soil. Besides, this is used as antitranspirant compound through foliar application in many plants thus reducing water use and ensures protection from other negative effects. Based on such beneficial properties, chitosan is utilized in sustainable agricultural practices owing to changing climates. Our review gathers the recent information on chitosan centered upon the abiotic stress responses which could be useful in future crop improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal GK, Rakwal R, Tamogami S, Yonekura M, Kubo A, Saji H (2002) Chitosan activates defence/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol Biochem 40:1061–1069

    Article  CAS  Google Scholar 

  • Ali A, Zahid N, Manickam S, Siddiqui Y, Alderson PG, Maqbool M (2014) Induction of lignin and pathogenesis related proteins in dragon fruit plants in response to submicron chitosan dispersions. Crop Prot 63:83–88

    Article  CAS  Google Scholar 

  • Allakhverdiev I, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Murata N, Carpentier R (2003) Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol 160:41–49

    Article  CAS  PubMed  Google Scholar 

  • Allan CR, Hadwiger LA (1979) The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp Mycol 3:285–287

    Article  CAS  Google Scholar 

  • Al-Tawaha AR, Turk MA, Al-Tawaha ARM et al (2018) Using chitosan to improve growth of maize cultivars under salinity conditions. Bulg J Agric Sci 24(3):437–442

    Google Scholar 

  • Amborabé BE, Bonmort J, Fleurat-Lessard P, Roblin G (2008) Early events induced by chitosan on plant cells. J Exp Bot 59:2317–2324

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Azinheiro S, Avelelas F, Leandro SM, Rodrigues AA (2014) Role for ABA in the plants response to chitosan. Front Mar Sci. https://doi.org/10.3389/conf.fmars.2014.02.00069

    Article  Google Scholar 

  • Bistgani ZE, Siadat SA, Bakhshandeh A, Pirbalouti AG, Hashemi M (2017) Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of Thymus daenensis Celak. Crop J 5(5):407–415

    Article  Google Scholar 

  • Bittelli M, Flury M, Campbell GS, Nichols EJ (2001) Reduction of transpiration through foliar application of chitosan. Agric For Meteorol 107:167–175

    Article  Google Scholar 

  • Boonlertnirun S, Sarobol E, Meechoui S, Sooksathan I (2007) Drought Recovery and grain yield potential of rice after chitosan application. Kasetsart J 41:1–6

    CAS  Google Scholar 

  • Chakraborty M, Karun A, Mitra A (2008) Accumulation of phenilpropanoid derivatives in chitosan-induced cell suspension culture of Cocos nucifera. J Plant Physiol. https://doi.org/10.1016/j.jplph2008.02.004

    Article  PubMed  Google Scholar 

  • Chandra S, Chakraborty N, DasguptaA SJ, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang B, Yang L, Cong W, Zu Y, Tang Z (2014) The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Plant Physiol Biochem 77:140–148

    Article  CAS  PubMed  Google Scholar 

  • Chatelain PG, Pintado ME, Vasconcelos MW (2014) Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris. Plant Sci 215–216:134–140. https://doi.org/10.1016/j.plantsci.2013.11.009

    Article  CAS  PubMed  Google Scholar 

  • Chen HP, Xu LL (2005) Isolation and characterization of a novel chitosan-binding protein from non-heading Chinese cabbage leaves. J Integr Plant Biol 47:452–456

    Article  CAS  Google Scholar 

  • Chen YE, Yuan S, Liu HM, Chen ZY, Zhang YH, Zhang HY (2016) A combination ofchitosan and chemical fertilizers improves growth and disease resistance in Begonia hiemalis Fotsch. Hortic Environ Biotechnol 57:1–10

    Article  CAS  Google Scholar 

  • Chibu H, Shibayama H (2001) Effects of chitosan applications on the growth of several crops. In: Uragami T, Kurita K, Fukamizo T (eds) Chitin and chitosan in life science. Yamaguchi pp 235–239

  • Choi YS, Kim YM, Hwang OJ, Han YJ, Kim SY, Kim JI (2013) Overexpression of Arabidopsis ABF3 gene confers enhanced tolerance to drought and heat stress in creeping bentgrass. Plant Biotechnol Rep 7:165–173

    Article  Google Scholar 

  • Croteau R, Gurkewitz S, Johnson MA, Fisk HJ (1987) Monoterpene and diterpene biosynthesis in lodgepole pine saplings infected with Ceratocystis clavigera or treated with carbohydrate elicitors. Plant Physiol 85:1123–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Din J, Khan SU, Ali I, Gurmani AR (2011) Physiological and agronomic response of canola varieties to drought stress. J Anim Plant Sci 21(1):78–82

    Google Scholar 

  • Doares SH, Syrovets T, Wieler EW, Ryan A (1995) Oligogalacturonides and chitosan activate plant defensive gene through the octadecanoid pathway. Proc Natl Acad USA 92:4095–4098

    Article  CAS  Google Scholar 

  • Du B, Jansen K, Kleiber A, Eiblmeier M, Kammerer B, Ensminger I, Gessler A, Rennenberg H, Kreuzwieser JA (2015) Coastal and an interior Douglas fir provenance exhibit different metabolic strategies to deal with drought stress. Tree Physiol 36:148

    PubMed  Google Scholar 

  • Dwivedi P, Singh BN (2014) Nitric oxide as a signalling agent in plant. In Singh AL (ed) Advances in crop physiol, pp 63–78

  • Dzung NA (2005) Application of chitin, chitosan and their derivatives for agriculture in Vietnam. J Chitin Chitosan 10(3):109–113

    Google Scholar 

  • Dzung NA (2007) Chitosan and their derivatives as prospective biosubstances for developing sustainable eco-agriculture. In Senel S, Varum KM, Sumnu MM, Hincal AA (eds) Advances in chitin science X, pp 453–459

  • Dzung NA, Khanh VTP, Dzung TT (2011) Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr Polym 84:751–755

    Article  CAS  Google Scholar 

  • El-Hassni M, El-Hadrami A, Daayf F, Chérif M, Ait-Barka E, El-Hadrami I (2004) Chitosan, antifungal product against Fusarium oxysporum f. sp. albedinis and elicitor of defense reactions in date palm roots. Phytopathol Mediterr 43:195–204

    CAS  Google Scholar 

  • Escudero N, Lopez-Moya F, Ghahremani Z, Zavala-Gonzalez EA, Alaguero-Cordovilla A et al (2017) Chitosan increases tomato root colonization by Pochonia chlamydosporia and their combination reduces root-knot nematode damage. Front Plant Sci 8:1415

    Article  PubMed  PubMed Central  Google Scholar 

  • Faoro F, Iriti M (2007) Callose synthesis as a tool to screen chitosan efficacy in inducing plantresistance to pathogens. Caryologia 60:121–124

    Article  Google Scholar 

  • Faoro F, Maffi D, Cantu D, Iriti M (2008) Chemical-induced resistance against powdery mildewin barley: the effects of chitosan and benzothiadiazole. Biocontrol 53:387–401

    Article  CAS  Google Scholar 

  • Farouk S, Amany AR (2012) Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egypt J Biol 14(1):14–16

    Google Scholar 

  • Farouk S, Mosa AA, Taha AA, Ibrahim Heba M, Gahmery AM (2011) Protective effect of humic acid and chitosan on radish (Raphanus sativus L. var. sativus) plants subjected to cadmium stress. J Stress Physiol Biochem 7(2):99–116

    Google Scholar 

  • Guan YJ, Hu J, Wang X, Shao C (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J Zhejiang Univ Sci 10(6):427–433

    Article  CAS  Google Scholar 

  • Guo HL, Du YG, Bai XF, Zhao XM (2003) Effects of active oxygen on suspended cotton cell culture by oligochitosan. Chin J Mar Drugs 1:11–12

    Google Scholar 

  • Hadwiger LA (1989) Method for treating cereal crop Seed with chitosan to enhance yield, root growth, and stem Strength. U.S. Patent US4978381 A

  • Hadwiger LA (2013) Multiple effects of chitosan on plant systems: solid science or hype. Plant Sci 208:42–49

    Article  CAS  PubMed  Google Scholar 

  • Hadwiger LA (2015) Anatomy of a nonhost disease resistance response of pea to Fusarium solani: PR gene elicitation via DNase, chitosan and chromatin alterations. Front Plant Sci 6:373

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadwiger LA, Ogawa T, Kuyama H (1994) Chitosan polymer sizes effective in inducing phytoalexin accumulation and fungal suppression are verified with synthesized oligomers. Mol Plant Microbe Interact 7:531–533

    Article  CAS  PubMed  Google Scholar 

  • He L, Gao Z, Li R (2009) Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. Afr J Biotechnol 8:6151–6157

    Article  CAS  Google Scholar 

  • Hidangmayum A, Dwivedi P (2018) Plant responses to Trichoderma spp. and their tolerance to abiotic stresses: a review. J Pharmacogn Phytochem 7(1):758–766

    CAS  Google Scholar 

  • Hirano S, Yamamoto T, Hayashi M, Nishida T, Inui H (1990) Chitinase activity in seeds coated with chitosan derivatives. Agric Biol Chem 54(10):2719–2720

    CAS  Google Scholar 

  • Ibrahim EA, Ramadan WA (2015) Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci Hortic 184:101–105

    Article  CAS  Google Scholar 

  • Iriti M, Faoro F (2008) Abscisic acid mediates the chitosan-induced resistance in plant against viral disease. Plant Physiol Biochem 46:1106–1111

    Article  PubMed  Google Scholar 

  • Iriti M, Faoro F (2009) Chitosan as a MAMP, searching for a PRR. Plant Signal Behav 4(1):66–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iriti M, Sironi M, Gomarasca S, Casazza AP, Soave C, Faoro F (2006) Cell death-mediated antiviral effect of chitosan in tabacco. Plant Physiol Biochem 44:893–900

    Article  CAS  PubMed  Google Scholar 

  • Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, Gargano M, Faoro F (2009) Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environ Exp Bot 66:493–500

    Article  CAS  Google Scholar 

  • Ishibashi Y, Yamagguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng S (2011) Hydrogen peroxidase spraying alleviates drought stress in soybean plants. J Plant Physiol 168:1562–1567

    Article  CAS  PubMed  Google Scholar 

  • Jabeen N, Ahmad R (2013) The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. J Sci Food Agric 93(7):1699–1705

    Article  CAS  PubMed  Google Scholar 

  • Jiao Z, Li Y, Li J, Xu X, Li H, Lu D, Wang J (2012) Effects of exogenous chitosan on physiological characteristics of potato seedlings under drought stress and rehydration. Potato Res 55:293–301

    Article  CAS  Google Scholar 

  • Joshi V, Joung JG, Fei Z, Jander G (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39:933–947

    Article  CAS  PubMed  Google Scholar 

  • Kamari A, Pulford ID, Hargreaves JS (2011) Binding of heavy metal contaminants onto chitosans—an evaluation for remediation of metal contaminated soil and water. J Environ Manag 92:2675–2682. https://doi.org/10.1016/j.jenvman.2011.06.005

    Article  CAS  Google Scholar 

  • Kamari A, Pulford ID, Hargreaves JS (2012) Metal accumulation in Lolium perenne and Brassica napus as affected by application of chitosans. Int J Phytoremediation 14:894–907. https://doi.org/10.1080/15226514.2011.636401

    Article  CAS  PubMed  Google Scholar 

  • Karimi S, Abbaspour H, Sinaki JM, Makarian H (2012) Effects of water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars castor bean (Ricinus communis L.). J Physiol Biochem 8:160–169

    Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2015.02.039

    Article  PubMed  Google Scholar 

  • Katiyar D, Singh B, Lall AM, Haldar C (2011) Efficacy of chitooligosaccharides for the management of diabetes in alloxan induced mice: a correlative study with antihyperlipidemic and antioxidative activity. Eur J Pharmaceut Sci 44:534–543

    Article  CAS  Google Scholar 

  • Katiyar D, Hemantaranjan A, Singh B, Bhanu NA (2014) A future perspective in crop protection: chitosan and its oligosaccharides. Adv Plants Agric Res 1:06

    Google Scholar 

  • Katiyar D, Hemantaranjan A, Singh B (2015) Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian J Plant Physiol 20(1):1–9

    Article  CAS  Google Scholar 

  • Kaya M, Mujtaba M, Bulut E, Akyuz B, Zelencova L, Sofi K (2015) Fluctuation in physicochemical propertiesof chitins extracted from different body parts of honeybee. Carbohydr Polym 132:9–16

    Article  CAS  PubMed  Google Scholar 

  • Khan WM, Prithiviraj B, Smiyh DL (2002) Effect of foliar application of chitinoligosaccharides on photosynthesis of maize and soybean. Photosynthetica 40(621–624):87

    Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J Plant Physiol 160:859–863

    Article  CAS  PubMed  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M, Khan MMA (2010) Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidative defence system and osmoprotectant accumulation. Acta Physiol Plant 32:121–132

    Article  CAS  Google Scholar 

  • Khokon MAR, Uraji M, Munemasa S, Okuma E, Nakamura Y, Mori IC, Murata Y (2010) Chitosan-induced stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis. Biosci Biotechnol Biochem 74:2313–2315

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koers S, Guzel-Deger A, Marten I, Roelfsema MRG (2011) Barley mildew and its elicitor chitosan promote closed stomata by stimulating guard-cell S-type anion channels. Plant J 68:670–680

    Article  CAS  PubMed  Google Scholar 

  • Kohle H, Jeblick W, Poten F, Blaschek W, Kauss H (1985) Chitosan-elicited callose synthesis in soybean cells as a Ca2+-dependent process. Plant Physiol 77:544–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalski B, Terry FJ, Herrera L, Peñalver DA (2007) Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Res 49:167–176

    Article  CAS  Google Scholar 

  • Krupa-Małkiewicz M, Fornal N (2018) Application of chitosan in vitro to minimize the adverse effects of salinity in Petunia × atkinsiana D. don. J Ecol Eng 19(1):143–149

    Article  Google Scholar 

  • Kumar P, Singh BN, Dwivedi P (2016) Managing plant hormones to improve plant adaptability to future environmental stresses: a deeper insight into abscisic acid signaling in response to temperature and heavy metal stress. Sustaining Future Food Security in the Changing Environment [Nova Scientific Publishers, USA]

  • Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol (NY) 8:203–226

    Article  CAS  Google Scholar 

  • Kuyyogsuy A, Deenamo N, Khompatara K, Ekchaweng K, Churngchow N (2018) Chitosan enhances resistance in rubber tree (Hevea brasiliensis), through the induction of abscisic acid (ABA). Physiol Mol Plant Pathol 102:67–78

    Article  CAS  Google Scholar 

  • Lafontaine JP, Benhamou N (1996) Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicislycopersici. Biocontrol Sci Technol 6:111–124

    Article  Google Scholar 

  • Lai Q, Zhi-yi B, Zhu-Jun Z, Qiong-Qiu Q, Bi-Zeng M (2007) Effects of osmotic stress on antioxidant enzymes activities in leaf discs of PSAG12-IPT modified gerbera. J Zheijang Univ Sci 8(7):458–464. https://doi.org/10.1631/jzus.2007.B0458

    Article  CAS  Google Scholar 

  • Lee S, Choi H, Suh S, Doo IS, Oh KY, Choi EJ, Taylor ATS, Low PS, Lee Y (1999) Oligogalacturonic acid and chitosan reduce stomatal aperture by Inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 121:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid and signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  PubMed  Google Scholar 

  • Li WJ, Jiang X, Xue PH, Chen SM (2002) Inhibitory effects of chitosan on superoxide anion radicals and lipid free radicals. Chin Sci Bull 47:887–889. https://doi.org/10.1360/02tb9198

    Article  CAS  Google Scholar 

  • Li Y, Zhao XM, Xia XY, Luan YS, Du YG, Li FL (2008) Effects of oligochitosan on photosynthetic parameter of Brassica napus seedlings under drought stress. Acta Agron Sin 34:326–329

    Article  CAS  Google Scholar 

  • Li Z, Zhang Y, Zhang X, Merewitz E, Peng Y, Ma X, Yan Y (2017) Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. J Proteome Res 16(8):3039–3052

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Hu X, Zhang W, Rogers WJ, Cai W (2005) Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J Plant Physiol 162:937–944

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Liu Y, Guo K, Fan D, Li G, Zheng Y, Yu L, Yang R (2011) Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ Exp Bot 71:174–183

    Article  CAS  Google Scholar 

  • Lizama-Uc G, Estrada-Mota IA, Caamal-Chan MG, Souza-Perera R, Oropeza-Salìn C, Islas-Flores I, Zuñiga-Aguillar JJ (2007) Chitosan activates a MAP-kinase pathway and modifies abundance of defence-related transcripts in calli of Cocus nucifera L. Physiol Mol Plant Pathol 70:130–141

    Article  CAS  Google Scholar 

  • Ma L, Li Y, Yu C, Wang Y, Li X, Li N, Bu N (2012) Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma 249(2):393–399

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Yang L, Yan H, Kennedy JF, Meng X (2013) Chitosan and oligochitosanenhance the resistance of peach fruit to brown rot. Carbohydr Polym 94:272–277

    Article  CAS  PubMed  Google Scholar 

  • Mahdavi B (2013) Seed germination and growth responses of Isabgol (Plantago ovata Forsk) to chitosan and salinity. Int J Agric Crop Sci 5:1084–1088

    Google Scholar 

  • Mahdavi B, Rahimi A (2013) Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. EurAsian J BioSci 7:69–76. https://doi.org/10.5053/ejobios.2013.7.0.9

    Article  CAS  Google Scholar 

  • Mahdavi B, Sanavy SAMM, Aghaalikhani M, Sharifi M, Dolatabadian A (2011) Chitosan improves osmotic potential tolerance in safflower (Carthamus tinctorius L.) seedlings. J Crop Improv 4:728–741

    Article  CAS  Google Scholar 

  • Malekpoor F, Pirbalouti G, Salimi A (2016) Effect of foliar application of chitosan on morphological and physiological characteristics of basil under reduced irrigation. Res Crops 17(2):354–359. https://doi.org/10.5958/2348-7542.2016.00060.7

    Article  Google Scholar 

  • Malerba M, Cerana R (2015) Reactive oxygen and nitrogen species indefense/stress responses activated by chitosan in sycamore cultured cells. Int J Mol Sci 16:3019–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez G, Reyes G, Falcón R, Núñez V (2015) Effect of seed treatment with chitosan on the growth of rice (Oryza sativa L.) seedlings cv. INCA LP-5 in saline medium. Cultivos Tropicales 36(1):143–150

    Google Scholar 

  • Matysik J, Bhalu BA, Mohanty P, Bohrweg N (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • McKersie BD, Lesheim Y (2013) Stress and stress coping in cultivated plants. Springer, Berlin

    Google Scholar 

  • Mejía-Teniente L, Duran-Flores FD, Chapa-Oliver AM, Torres-Pacheco I, Cruz-Hernández A, González-Chavira MM, Ocampo-Velázquez RV, Guevara-González RG (2013) Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications. Int J Mol Sci 14:10178–10196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618

    Article  PubMed  Google Scholar 

  • Muriefah SS (2013) Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions. Int Res J Agric Sci Soil Sci 3:192–199

    Google Scholar 

  • Nazarli A, Faraji F, Zardashti MR (2011) Effect of drought stress and polymer on osmotic adjustment and photosynthetic pigments of sunflower. Cercetări Agronomice în Moldova 44(1):35–42

    Google Scholar 

  • O’Herlihy EA, Duffy EM, Cassells AC (2003) The effects of arbuscular mycorrhizal fungi and chitosan sprays on yield and late blight resistance in potato crops from microplants. Folia Geobot 38:201–207

    Article  Google Scholar 

  • Ohta K, Atarashi H, Shimatani Y, Matsumoto S, Asao T, Hosoki T (2000) Effects of chitosan with or withoutnitrogen treatments on seedling growth in Eustoma grandiflorum (Raf.) Shinn. Cv. KairyouWakamurasaki. J Jpn Soc Hortic Sci 69:63–65

    Article  CAS  Google Scholar 

  • Oliveira HC, Gomes BC, Pelegrino MT, Seabra AB (2016) Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 61:10–19

    Article  CAS  PubMed  Google Scholar 

  • Paleg LG, Aspinall D (1981) The physiology and biochemistry of drought resistance in plants. Academic Press, New York

    Google Scholar 

  • Pearce RB, Ride JP (1982) Chitin and related compounds as elicitors of the lignification response in wounded wheat leaves. Physiol Plant Pathol 20:119–123

    Article  CAS  Google Scholar 

  • Petutschnig EK, Jones AME, Serazetdinova L, Lipka U, Lipka V (2010) The Lysin Motif Receptor-like Kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phothi R, Theerakarunwong CD (2017) Effect of chitosan on physiology, photosynthesis and biomass of rice (Oryza sativa L.) under elevated ozone. Aust J Crop Sci 11:624–630

    Article  CAS  Google Scholar 

  • Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hort 196:49–65

    Article  CAS  Google Scholar 

  • Pirbalouti AG, Malekpoor F, Salimi A, Golparvar A (2017) Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil (Ocimum ciliatum and Ocimum basilicum) under reduced irrigation. Sci Hortic 217:114–122

    Article  CAS  Google Scholar 

  • Pongprayoon W, Roytrakul S, Pichayangkura R, Chadchawan S (2013) The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regul 70:159–173

    Article  CAS  Google Scholar 

  • Possingham JV (1980) Plastid replication and development in the life cycle of higher plants. Annu Rev Plant Physiol 31:113–129

    Article  CAS  Google Scholar 

  • Povero G, Loreti E, Pucciariello C, Santaniello A, Di Tommaso D, Di Tommaso G, Kapetis D, Zolezzi F, Piaggesi A, Perata P (2011) Transcript profiling of chitosan-treated Arabidopsis seedings. J Plant Res 124:619–629

    Article  CAS  PubMed  Google Scholar 

  • Prashanth HKV, Dharmesh SM, Rao KS, Tharanathan RN (2007) Free radical-induced chitosan depolymerized products protect calf thymus DNA from oxidative damage. Carbohydr Res 342:190–195. https://doi.org/10.1016/j.carres.2006.11.010

    Article  CAS  Google Scholar 

  • Raho N, Ramirez L, Lanteri ML, Gonorazky G, Lamattina L, Ten Have A, Laxalt AM (2011) Phosphatidic acid production in chitosan-elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J Plant Physiol 168(6):534–539

    Article  CAS  PubMed  Google Scholar 

  • Rakwal R, Tamogami S, Agrawal GK, Iwahashi H (2002) Octadecanoid signaling component “burst” in rice (Oryza sativa L.) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochem Biophys Res Commun 295(5):1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Ray SR, Bhuiyan MJH, Hossain MA, Hasan AK, Sharmin S (2016) Chitosan ameliorates growth and biochemical attributes in mungbean varieties under saline condition. Res Agric Livest Fish 3(1):45–51

    Article  Google Scholar 

  • Reddy MP, Vora AB (1986) Salinity induced changes in pigment composition and chlorophyllase activity of wheat. Indian J Plant Physiol 29(4):331–334

    CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and application. Prog Polym Sci 31(7):603–632

    Article  CAS  Google Scholar 

  • Rolland F, Baenagonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Romanazzi G, Nigro F, Ippolito A, Di Venere D, Salerno M (2002) Effects of pre- and post-harvest chitosan treatments to control storage grey mold of table grapes. J Food Sci 67:1862–1867

    Article  CAS  Google Scholar 

  • Rouhi V, Samson R, Lemeur R, Van Damme P (2007) Photosynthetic gas-exchange characteristics in three different almond species during drought stress and subsequent recovery. Environ Exp Bot 59(2):117–129

    Article  CAS  Google Scholar 

  • Sathiyabama M, Akila G, Einstein Charles R (2014) Chitosan-induced defence responses in tomatoplants against early blight disease caused by Alternaria solani (Ellis and Martin) Sorauer. Arch Phytopathol Plant Prot 47:1777–1787

    Article  CAS  Google Scholar 

  • Seabra AB, Rai M, Durán N (2014) Nano carriers for nitric oxide delivery and its potential applications in plant physiological process: a mini review. J Plant Biochem Biotechnol 23:1–10

    Article  CAS  Google Scholar 

  • Shamov M, Bratskaya SY, Avramenko V (2002) Interaction of carboxylic acids with chitosan: effect of pK and hydrocarbon chain length. J Colloid Interface Sci 249:316–321

    Article  CAS  PubMed  Google Scholar 

  • Sharif R, Mujtaba M, Ur Rahman M, Shalmani A, Ahmad H, Anwar T, Tianchan D, Wang X (2018) The multifunctional role of chitosan in horticultural crops: a review. Molecules 23(4):872

    Article  CAS  PubMed Central  Google Scholar 

  • Sheikha SA, Al-Malki FM (2011) Growth and chlorophyll responses of bean plants to chitosan applications. Eur J Sci Res 50(1):124–134

    Google Scholar 

  • Singh BN, Dwivedi P (2016) Sugar, amino acids and nitrate as nitrogenous source of fertilization influence growth of Xanthomonasoryzae pv. oryzae and Aspergillus species in hypersensitive response development of tobacco crop. Int J Plant Reprod Biol 8:88–93

    CAS  Google Scholar 

  • Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB (2018) Trichoderma asperellum T42 reprograms tobacco for enhanced nitrogen utilization efficiency and plant growth when fed with N nutrients. Front Plant Sci 9:163. https://doi.org/10.3389/fpls.2018.00163

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava N, Gonugunta VK, Puli MR, Raghavendra AS (2009) Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229(4):757–765

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Xie WM, Xu PX (2004) Superoxide anion scavenging activity of graft chitosan derivatives. Carbohydr Polym 58:379–382. https://doi.org/10.1016/j.carbpol.2004.06.042

    Article  CAS  Google Scholar 

  • Sun T, Yao Q, Zhou D, Mao F (2008) Antioxidant activity of N-carboxymethyl chitosan oligosaccharides. Bioorg Med Chem Lett 18:5774–5776

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos MW (2014) Chitosan and chitooligosaccharide utilization in phytoremediation and biofortification programs: current knowledge and future perspectives. Front Plant Sci 5:616

    PubMed  PubMed Central  Google Scholar 

  • Vasiukova NI, Zinoveva SV, Iiinskaia LI, Perekhod EA, Chalenko GI et al (2001) Modulation of plant resistance to diseases by water-soluble chitosan. Prikladnaia Biokhimiia Mikrobiologiia 37(1):115–122

    CAS  Google Scholar 

  • Wang W, Li S, Zhao X, Du Y, Lin B (2008) Oligochitosan induces cell death and hydrogen peroxide accumulation in tobacco suspension cells. Pestic Biochem Physiol 90:106–113

    Article  CAS  Google Scholar 

  • Xie WM, Xu PX, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 11:1699–1701. https://doi.org/10.1016/S0960-894X(01)002852

    Article  CAS  PubMed  Google Scholar 

  • Xu QJ, Nian YG, Jin XC, Yan CZ, Liu J, Jiang GM (2007) Effects of chitosan on growth of an aquatic plant (Hydrilla verticillata) in polluted waters with different chemical oxygen demands. J Environ Sci 19:217–222

    Article  CAS  Google Scholar 

  • Yahyaabadi HM, Asgharipour MR, Basiri M (2016) Role of chitosan in improving salinity resistance through some morphological and physiological characteristics in fenugreek (Trigonella foenum-graecum L.). J Sci Technol Greenhouse Cult 7(25):165–174

    Google Scholar 

  • Yang F, Hu J, Li J, Wu X, Qian Y (2009) Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regul 58:131–136

    Article  CAS  Google Scholar 

  • Yin XQ, Lin Q, Zhang Q, Yang LC (2002) O2- scavenging activity of chitosan and its metal complexes. Chin J Appl Chem 19:325–328

    CAS  Google Scholar 

  • Yin H, Li S, Zhao X, Du Y, Ma X (2006) cDNA microarray analysis of gene expression in Brassica napus treated with oligochitosan elicitor. Plant Physiol Biochem 44:910–916

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Bai XF, Du YG (2008) The primary study of oligochitosan inducing resistance to Sclerotinia scleraotiorum on B. napus. J Biotechnol 136:600–601

    Article  Google Scholar 

  • Zeng D, Luo X (2012) Physiological effects of chitosan coating on wheat growth and activities of protective enzyme with drought tolerance. Open J Soil Sci 2:282–288

    Article  CAS  Google Scholar 

  • Zhang XK, Tang ZL, Zhan L et al (2002) Influence of chitosan on induction rapeseed resistance. Agric Sci China 35:287–290

    CAS  Google Scholar 

  • Zong H, Li K, Liu S, Song L, Xing R, Chen X, Li P (2017a) Improvement in cadmium tolerance of edible rape (Brassica rapa L.) with exogenous application of chitooligosaccharide. Chemosphere 181:92–100

    Article  CAS  PubMed  Google Scholar 

  • Zong H, Liu S, Xing R, Chen X, Li P (2017b) Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. Ecotoxicol Environ Saf 138:271–278

    Article  CAS  PubMed  Google Scholar 

  • Zuppini A, Baldan B, Millioni R, Favaron F, Navazio L, Mariani P (2003) Chitosan induces Ca2+ mediated programmed cell death in soybean cells. New Phytol 161:557–568

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the researchers working on chitosan application in plant science for improving our understanding of this novel bio-polymer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmanabh Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidangmayum, A., Dwivedi, P., Katiyar, D. et al. Application of chitosan on plant responses with special reference to abiotic stress. Physiol Mol Biol Plants 25, 313–326 (2019). https://doi.org/10.1007/s12298-018-0633-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-018-0633-1

Keywords

Navigation