Skip to main content
Log in

Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The effects of chitosan (β-1,4 linked glucosamine, a fungal elicitor), on the patterns of stomatal movement and signaling components were studied. cPTIO (NO scavenger), sodium tungstate (nitrate reductase inhibitor) or l-NAME (NO synthase inhibitor) restricted the chitosan induced stomatal closure, demonstrating that NO is an essential factor. Similarly, catalase (H2O2 scavenger) or DPI [NAD(P)H oxidase inhibitor] and BAPTA-AM or BAPTA (calcium chelators) prevented chitosan induced stomatal closure, suggesting that reactive oxygen species (ROS) and calcium were involved during such response. Monitoring the NO and ROS production in guard cells by fluorescent probes (DAF-2DA and H2DCFDA) indicated that on exposure to chitosan, the levels of NO rose after only 10 min, while those of ROS increased already by 5 min. cPTIO or sodium tungstate or l-NAME prevented the rise in NO levels but did not restrict the ROS production. In contrast, catalase or DPI restricted the chitosan-induced production of both ROS and NO in guard cells. The calcium chelators, BAPTA-AM or BAPTA, did not have a significant effect on the chitosan induced rise in NO or ROS. We propose that the production of NO is an important signaling component and participates downstream of ROS production. The effects of chitosan strike a marked similarity with those of ABA or MJ on guard cells and indicate the convergence of their signal transduction pathways leading to stomatal closure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BAPTA:

1,2-bis(o-Aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid

BAPTA-AM:

1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester

cPTIO:

2-Phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide

DAF-2DA:

4,5-Diaminofluorescein diacetate

DPI:

Diphenyleneiodonium chloride

H2DCFDA:

2′,7′-Dichlorodihydrofluorescein diacetate

l-NAME:

N-nitro-l-Arg-methyl ester

MES:

2-(N-morpholino) ethanesulphonic acid

MJ:

Methyl jasmonate

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NR:

Nitrate reductase

ROS:

Reactive oxygen species

SNP:

Sodium nitroprusside

References

  • Amborabe BE, Bonmort J, Fleurat-Lessard P, Roblin G (2008) Early events induced by chitosan on plant cells. J Exp Bot 59:2317–2324

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9:345–375

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM, Shimazaki K (1999) The multisensory guard cell: stomatal responses to blue light and abscisic acid. Plant Physiol 119:809–815

    Article  PubMed  CAS  Google Scholar 

  • Beffagna N, Lutzu I (2007) Inhibition of catalase activity as an early response of Arabidopsis thaliana cultured cells to the phytotoxin fusicoccin. J Exp Bot 58:4183–4194

    Article  PubMed  CAS  Google Scholar 

  • Blume B, Nürnberger T, Nass N, Scheel D (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 12:1425–1440

    Article  PubMed  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  PubMed  CAS  Google Scholar 

  • Courtois C, Besson A, Dahan J, Bourque S, Dobrowolska G, Pugin A, Wendehenne D (2008) Nitric oxide signaling in plants: interplays with Ca2+ and protein kinases. J Exp Bot 59:155–163

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb CJ (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  PubMed  CAS  Google Scholar 

  • del Río LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    Article  PubMed  Google Scholar 

  • Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells. J Exp Bot 55:205–212

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill SJ (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:16314–16318

    Article  PubMed  CAS  Google Scholar 

  • Dong L, Zhang X, Jiang J, An GY, Zhang LR, Song CP (2005) NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba L. J Plant Physiol Mol Biol 31:62–70

    Google Scholar 

  • Fan LM, Zhao Z, Assmann SM (2004) Guard cells: a dynamic signaling model. Curr Opin Plant Biol 55:401–427

    Google Scholar 

  • Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 6:817–824

    Article  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • García-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 19:711–724

    Article  PubMed  Google Scholar 

  • García-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  Google Scholar 

  • García-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    Article  PubMed  Google Scholar 

  • García-Mata C, Lamattina L (2003) Abscisic acid, nitric oxide and stomatal closure-is nitrate reductase one of the missing links? Trends Plant Sci 8:20–26

    Article  PubMed  Google Scholar 

  • García-Mata C, Lamattina L (2007) Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide 17:143–151

    Article  PubMed  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • He JM, Xu H, She XP, Song XG, Zhao WM (2005) The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. Funct Plant Biol 32:237–247

    Article  CAS  Google Scholar 

  • Holley SR, Yalamanchili RD, Moura DS, Ryan CA, Stratmann JW (2003) Convergence of signaling pathways induced by systemin, oligosaccharide elicitors, and ultraviolet-B radiation at the level of mitogen-activated protein kinases in Lycopersicon peruvianum suspension-cultured cells. Plant Physiol 132:1728–1738

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Yun BW, Kang JG, Raja MU, Kwon E, Sorhagen K, Chu C, Wang Y, Loake GJ (2008) Nitric oxide function and signaling in plant disease resistance. J Exp Bot 59:147–154

    Article  PubMed  CAS  Google Scholar 

  • Israelsson M, Siegel RS, Young J, Hashimoto M, Iba K, Schroeder JI (2006) Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr Opin Plant Biol 9:654–663

    Article  PubMed  CAS  Google Scholar 

  • Klüsener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugouvieux V, Schroeder JI (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol 130:2152–2163

    Article  PubMed  Google Scholar 

  • Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453

    Article  PubMed  CAS  Google Scholar 

  • Kolla VA, Raghavendra AS (2007) Nitric oxide as an intermediate in bicarbonate-induced stomatal closure in Pisum sativum. Physiol Plant 130:91–98

    Article  CAS  Google Scholar 

  • Kolla VA, Vavasseur A, Raghavendra AS (2007) Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Pisum sativum. Planta 225:1421–1429

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329

    Article  PubMed  CAS  Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Choi H, Suh S, Doo IS, Oh KY, Choi EJ, Schroeder AT, Low PS, Lee Y (1999) Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 121:147–152

    Article  PubMed  CAS  Google Scholar 

  • MacRobbie EAC (2000) ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+ (Rb+) release. Proc Natl Acad Sci USA 97:12361–12368

    Article  PubMed  CAS  Google Scholar 

  • Mansfield TA, Hetherington AM, Atkinson CJ (1990) Some current aspects of stomatal physiology. Annu Rev Plant Physiol Plant Mol Biol 41:55–75

    Article  CAS  Google Scholar 

  • McAinsh MR, Clayton H, Mansfield TA, Hetherington AM (1996) Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol 111:1031–1042

    PubMed  CAS  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  PubMed  CAS  Google Scholar 

  • Mithöfer A, Ebel J, Bhagwat AA, Boller T, Neuhaus-Url G (1999) Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with ß-glucan or chitin elicitors. Planta 207:566–574

    Article  Google Scholar 

  • Moulton P, Martin H, Ainger A, Cross A, Hoare C, Doel J, Harrison R, Eisenthal R, Hancock J (2000) The inhibition of flavoproteins by phenoxaiodonium, a new iodonium analogue. Eur J Pharm 401:115–120

    Article  CAS  Google Scholar 

  • Mur LAJ, Carver TLW, Prats E (2006) NO way to live; the various roles of nitric oxide in plant–pathogen interactions. J Exp Bot 57:489–505

    Article  PubMed  CAS  Google Scholar 

  • Murata Y, Pei ZM, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1–1 and abi2–1 protein phosphatase 2C mutants. Plant Cell 13:2513–2523

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  PubMed  CAS  Google Scholar 

  • Planchet E, Kaiser WM (2006) Nitric oxide (NO) detection by DAF fluorescence and chemiluminescence: a comparison using abiotic and biotic NO sources. J Exp Bot 57:3043–3055

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AD (2005) Nitric oxide signaling in plants. Vitam Horm 72:339–398

    Article  PubMed  CAS  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dang JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  CAS  Google Scholar 

  • Zeiger E (2000) Sensory transduction of blue light in guard cells. Trends Plant Sci 5:183–185

    Article  PubMed  CAS  Google Scholar 

  • Zemojtel T, Frohlich A, Plmieri MC, Kolanczyk M, Mikula I, Wyrwicz LS, Wanker EE, Mundlos S, Vingron M, Martasek P, Durner J (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785

    Article  PubMed  Google Scholar 

  • Zhao JT, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, She X, Du Y, Liang X (2007) Induction of antiviral resistance and stimulary effect by oligochitosan in tobacco. Pestic Biochem Physiol 87:78–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Council of Scientific and Industrial Research [No. 38(0259)/08/EMR-II], Department of Biotechnology (BT/PR9227/PBD/16/748/2007) and a JC Bose National Fellowship from Department of Science and Technology (No. SR/S2/JCB-06/2006) to A. S. Raghavendra, all from New Delhi. V. K. Gonugunta and M. R. Puli are supported by CSIR Research Fellowships, New Delhi. We also acknowledge the support from the grants of Department of Science and Technology-Fund for Improvement of Science & Technology Infrastructure (DST-FIST) and University Grants Commission-Special Assistance Program (UGC-SAP) to Department of Plant Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agepati S. Raghavendra.

Additional information

Nupur Srivastava and Vijay K. Gonugunta have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, N., Gonugunta, V.K., Puli, M.R. et al. Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum . Planta 229, 757–765 (2009). https://doi.org/10.1007/s00425-008-0855-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0855-5

Keywords

Navigation