Skip to main content
Log in

Verification of the improved constitutive tensile model for fibre reinforced concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Recently, new constitutive tensile models for describing the post-cracking behaviour of fibre reinforced concrete for different performance classes were developed by the author(s). The models are based on test data on notched beams with macro fibres, including one type of glass fibres and two polypropylene fibres. Nowadays, a wide range of macro fibres for reinforcing concrete mixtures is available. The objective of this paper is thus to examine whether the newly developed models are applicable for other FRC mixtures. For this purpose, the experimental results of 236 three-point bending tests on notched beams, obtained from Vrijdaghs et al. and the international company Bekaert, are compared with the model predictions. The results indicate that the proposed model for performance class a & b and class c exhibit a higher accuracy at CMOD1 than the model in MC10 and EC2 (next version). However, further optimization is required at CMOD3 for the model of performance class a & b and class d. A strong correlation is also found between the experimental fR1-values, as well as the fR3-values, and the predicted compression zone height of the beam cross-section at midspan by use of those new constitutive models. Moreover, this paper also proposes a modification to the model of Oettel et al. for better estimating the residual flexural tensile strength of FRC mixtures with 4D Dramix fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fike R, Kodur V (2011) Enhancing the fire resistance of composite floor assemblies through the use of steel fiber reinforced concrete. Eng Struct 33(10):2870–2878. https://doi.org/10.1016/j.engstruct.2011.06.011

    Article  Google Scholar 

  2. Zamri NF, Mohamed RN, Awalluddin D, Abdullah R (2022) Experimental evaluation on punching shear resistance of steel fibre reinforced self-compacting concrete flat slabs. J Build Eng 52:104441. https://doi.org/10.1016/j.jobe.2022.104441

    Article  Google Scholar 

  3. Nogales A, de la Fuente A (2021) Numerical-aided flexural-based design of fibre reinforced concrete column-supported flat slabs. Eng Struct 232:111745. https://doi.org/10.1016/j.engstruct.2020.111745

    Article  Google Scholar 

  4. Caratelli A, Meda A, Rinaldi Z, Romualdi P (2011) Structural behaviour of precast tunnel segments in fiber reinforced concrete. Tunn Undergr Space Technol 26(2):284–291. https://doi.org/10.1016/j.tust.2010.10.003

    Article  Google Scholar 

  5. Carlos TB, Rodrigues JPC, de Lima RCA, Dhima D (2018) Experimental analysis on flexural behaviour of RC beams strengthened with CFRP laminates and under fire conditions. Compos Struct 189:516–528. https://doi.org/10.1016/j.compstruct.2018.01.094

    Article  Google Scholar 

  6. Blanco A, Pujadas P, De La Fuente A, Cavalaro S, Aguado A (2013) Application of constitutive models in European codes to RC-FRC. Constr Build Mater 40:246–259. https://doi.org/10.1016/j.conbuildmat.2012.09.096

    Article  Google Scholar 

  7. Special Activity Group 5, fib Model Code 2010, no. September. Wilhelm Ernst & Sohn, Berlin. https://doi.org/10.1002/9783433604090.ch6.

  8. Tiberti G, Germano F, Antonio M, Plizzari GA (2018) An overview of the flexural post-cracking behavior of steel fiber reinforced concrete. Struct Concr 19(3):695–718

    Google Scholar 

  9. Conforti A, Zerbino R, Plizzari GA (2019) Influence of steel, glass and polymer fibers on the cracking behavior of reinforced concrete beams under flexure. Struct Concr 20(1):133–143. https://doi.org/10.1002/suco.201800079

    Article  Google Scholar 

  10. Infrastructuur in het Leefmilieu, “Dramix Guideline [final draft] Design of concrete structures - Steel wire fibre reinforced concrete structures with or without ordinary reinforcement.,” 1995.

  11. Falkner H, Teutsch M (1993) Untersuchung des Biegetragverhaltens von Stahlfaserbetonbalken unter Variation der Faserart. iBMBForschungsbericht, Braunsweig, Germany: Institut für Baustoffe, Massivbau und Brandschutz.

  12. Falkner H, Teutsch M, Klinkert H (1999) “Leistungsklassen von Stahlfaserbeton,” Braunsweig, Germany: Institut für Baustoffe, Massivbau und Brandschutz.

  13. Teutsch M (1993) Bemessungsgrundsätze für Bauteile aus Stahlfaserbeton Hochtief-Kolloquium ‘Entwicklung und Einsatz von Stahlfaserbeton.’ Frankfurt, Germany

    Google Scholar 

  14. Oettel V, Schulz M, Haist M (2022) Empirical approach for the residual flexural tensile strength of steel fiber-reinforced concrete based on notched three-point bending tests. Struct Concr 23(2):993–1004. https://doi.org/10.1002/suco.202100565

    Article  Google Scholar 

  15. CEN, “EN 14651: Tet method for metallic fibre concrete—measuring the flexural tensile strength (limit of proportionality (LOP), residual),” Brussels (2005).

  16. di Prisco M, Colombo M, Dozio D (2013) Fibre-reinforced concrete in fib Model Code 2010: principles, models and test validation. Struct Concr 14(4):342–361. https://doi.org/10.1002/suco.201300021

    Article  Google Scholar 

  17. di Prisco M, Kanstad T, Plizzari G, Minelli F, Haus A (2022) Eurocode 2—Annex L—European Harmonized Standard for Steel Fibre Reinforced Concrete,” pp. 539–551. https://doi.org/10.1007/978-3-030-83719-8_47.

  18. Vandevyvere B (2022) Post-cracking behaviour of fibre reinforced recycled concrete. PhD thesis, KU Leuven.

  19. Vandevyvere B, Vandewalle L, Li J (2023) Numerically optimized post-cracking branch of the constitutive tensile model for fiber-reinforced concrete with natural and recycled aggregates. Struct Concr. https://doi.org/10.1002/suco.202200574

    Article  Google Scholar 

  20. Vandevyvere B, Vandewalle L, Li J (2022) Improved simplified constitutive tensile model for fibre reinforced concrete. J Federat Struct Concrete. 24(4):4624–44. https://doi.org/10.1002/suco.2022003594644VANDEVYVEREETAL

  21. Vrijdaghs R, Van Itterbeeck P, De Smedt M, Vandewalle L (2021) Experimental study into the location of the neutral axis in fiber-reinforced concrete prisms. Struct Concr 22(1):285–297. https://doi.org/10.1002/suco.201900397

    Article  Google Scholar 

  22. Abdallah S, Fan M, Rees DWA (2016) Analysis and modelling of mechanical anchorage of 4D/5D hooked end steel fibres. Mater Des 112:539–552. https://doi.org/10.1016/j.matdes.2016.09.107.

  23. Abdallah S, Fan M (2017) Anchorage mechanisms of novel geometrical hooked-end steel fibres. Mater Struct 50(2):139. https://doi.org/10.1617/s11527-016-0991-5

    Article  Google Scholar 

  24. Bureau voor Normalisatie, “NBN EN 1990+A1: Eurocode - Grondslagen van het constructief ontwerp,” (2015).

  25. Bureau voor Normalisatie, “NBN EN 12390–3: Beproeving van verhard beton - Deel 3 : Druksterkte van proefstukken (+ AC:2011),(2009).

  26. Dupont D, Vandewalle L (2005) Distribution of steel fibres in rectangular sections. Cem Concr Compos 27(3):391–398. https://doi.org/10.1016/j.cemconcomp.2004.03.005

    Article  Google Scholar 

  27. Kooiman A (2000) Modelling steel fibre reinforced concrete for structural design. PhD thesis, TU Delft.

  28. Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. PhD thesis, TU Delft.

  29. Soetens T, Matthys S (2014) Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete. Constr Build Mater 73:458–471. https://doi.org/10.1016/j.conbuildmat.2014.09.093

    Article  Google Scholar 

  30. Vrijdaghs R, di Prisco M, Vandewalle L (2021) Sectional analysis of the flexural creep of cracked fiber reinforced concrete. Struct Concr 22(3):1817–1830. https://doi.org/10.1002/suco.202000559

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brecht Vandevyvere or Jiabin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Article note

The original online version of this article was revised: In Table 3, fist column the second occurrence of 'FRC class a, b' has been changed to 'FRC class c' and the third occurrence of 'FRC class a, b' has been changed to 'FRC class d'

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandevyvere, B., Vandewalle, L., Vrijdaghs, R. et al. Verification of the improved constitutive tensile model for fibre reinforced concrete. Mater Struct 57, 57 (2024). https://doi.org/10.1617/s11527-024-02336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-024-02336-8

Keywords

Navigation