Skip to main content
Log in

Lysobacter arenosi sp. nov. and Lysobacter solisilvae sp. nov. isolated from soil

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Two Gram-stain negative, yellow-pigmented, and mesophilic bacteria, designated strains R7T and R19T, were isolated from sandy and forest soil, South Korea, respectively. Both strains were non-motile rods showing catalase- and oxidase-positive activities. Both strains were shown to grow at 10–37°C and pH 6.0–9.0, and in the presence of 0–1.5% (w/v) NaCl. Strain R7T contained iso-C14:0, iso-C15:0, iso-C16:0, and summed feature 9 (comprising C16:0 10-methyl and/or iso-C17:1ω9c), whereas strain R19T contained iso-C11:0 3-OH, C16:1ω7c alcohol, iso-C11:0, iso-C15:0, iso-C16:0, and summed feature 9 (comprising C16:0 10-methyl and/or iso-C17:1ω9c) as major cellular fatty acids (> 5%). Both strains contained ubiquin-one-8 as the sole isoprenoid quinone and phosphatidylglycerol, phosphatidylethanolamine, and an unidentified phospholipid as the major polar lipids. The DNA G + C contents of strains R7T and R19T calculated from their genomes were 66.9 mol% and 68.9 mol%, respectively. Strains R7T and R19T were most closely related to Lysobacter panacisoli C8-1T and Lysobacter niabensis GH34-4T with 98.7% and 97.8% 16S rRNA sequence similarities, respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains R7T and R19T formed distinct phylogenetic lineages within the genus Lysobacter. Based on phenotypic, chemotaxonomic, and molecular features, strains R7T and R19T represent novel species of the genus Lysobacter, for which the names Lysobacter arenosi sp. nov. and Lysobacter solisilvae sp. nov. are proposed. The type strains of L. arenosi and L. solisilvae are R7T (= KACC 21663T = JCM 34257T) and R19T (= KACC 21767T = JCM 34258T), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aslam, Z., Yasir, M., Jeon, C.O., and Chung, Y.R. 2009. Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). Int. J. Syst. Evol. Microbiol. 59, 675–680.

    Article  CAS  PubMed  Google Scholar 

  • Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S.Y., Medema, M.H., and Weber, T. 2019. AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W., Zhao, Y.L., Cheng, J., Zhou, X.K., Salam, N., Fang, B.Z., Li, Q.Q., Hozzein, W.N., and Li, W.J. 2016. Lysobacter cavernae sp. nov., a novel bacterium isolated from a cave sample. Antonie van Leeuwenhoek 109, 1047–1053.

    Article  CAS  PubMed  Google Scholar 

  • Chhetri, G., Kim, J., Kim, I., and Seo, T. 2019. Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water. Antonie van Leeuwenhoek 112, 1349–1356.

    Article  CAS  PubMed  Google Scholar 

  • Choi, H., Im, W.T., and Park, J.S. 2018. Lysobacter spongiae sp. nov., isolated from spongin. J. Microbiol. 56, 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J.H., Seok, J.H., Cha, J.H., and Cha, C.J. 2014. Lysobacter panacisoli sp. nov., isolated from ginseng soil. Int. J. Syst. Evol. Microbiol. 64, 2193–2197.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, P. and Cook, F.D. 1978. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high ratio. Int. J. Syst. Bacteriol. 28, 367–393.

    Article  Google Scholar 

  • Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D.R., da Costa, M.S., Rooney, A.P., Yi, H., Xu, X.W., De Meyer, S., et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68, 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Du, J., Singh, H., Ngo, H.T.T., Won, K.H., Kim, K.Y., and Yi, T.H. 2015. Lysobacter tyrosinelyticus sp. nov. isolated from Gyeryongsan national park soil. J. Microbiol. 53, 365–370.

    Article  CAS  PubMed  Google Scholar 

  • Feng, T., Jeong, S.E., Lim, J.J., Hyun, S., and Jeon, C.O. 2019. Paraburkhoderia lacunae sp. nov., isolated from soil near an artificial pond. J. Microbiol. 57, 232–237.

    Article  CAS  PubMed  Google Scholar 

  • Gomori, G. 1955. Preparation of buffers for use in enzyme studies. Methods Enzymol. 1, 138–146.

    Article  CAS  Google Scholar 

  • Huo, Y., Kang, J.P., Hurh, J., Han, Y., Ahn, J.C., Mathiyalagan, R., Piao, C., and Yang, D.C. 2018. Lysobacter panacihumi sp. nov., isolated from ginseng cultivated soil. J. Microbiol. 56, 748–752.

    Article  CAS  PubMed  Google Scholar 

  • Im, W.T., Siddiqi, M.Z., Kim, S.Y., Huq, M.A., Lee, J.H., and Choi, K.D. 2020. Lysobacter lacus sp. nov., isolated from lake sediment. Int. J. Syst. Evol. Microbiol. 70, 2211–2216.

    Article  CAS  PubMed  Google Scholar 

  • Jang, J.H., Lee, D., and Seo, T. 2018. Lysobacter pedocola sp. nov., a novel species isolated from Korean soil. J. Microbiol. 56, 387–392.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, S.E., Lee, H.J., and Jeon, C.O. 2016. Lysobacter aestuarii sp. nov., isolated from estuary sediment. Int. J. Syst. Evol. Microbiol. 66, 1346–1351.

    Article  CAS  PubMed  Google Scholar 

  • Jin, C.Z., Song, X., Sung, Y.J., Jin, F.J., Li, T., Oh, H.M., Lee, H.G., and Jin, L. 2020. Lysobacter profundi sp. nov., isolated from freshwater sediment and reclassification of Lysobacter panaciterrae as Luteimonas panaciterrae comb. nov. Int. J. Syst. Evol. Microbiol. 70, 3878–3887.

    Article  CAS  PubMed  Google Scholar 

  • Ko, H.S., Jin, R.D., Krishnan, H.B., Lee, S.B., and Kim, K.Y. 2009. Bio-control ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Curr. Microbiol. 59, 608–615.

    Article  CAS  PubMed  Google Scholar 

  • Komagata, K. and Suzuki, K. 1988. Lipid and cell-wall analysis in bacterial systematics. In Collwell, R.R. and Grigorova, R. (eds.), Methods Microbiology, vol. 19, pp. 161–207. Academic Press, New York, USA.

    Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lányi, B. 1988. Classical and rapid identification methods for medically important bacteria. In Collwell, R.R. and Grigorova, R. (eds.), Methods Microbiology, vol. 19, pp. 1–67. Academic Press, New York, USA.

    Google Scholar 

  • Lapteva, Y.S., Zolova, O.E., Shlyapnikov, M.G., Tsfasman, I.M., Muranova, T.A., Stepnaya, O.A., Kulaev, I.S., and Granovsky, I.E. 2012. Cloning and expression analysis of genes encoding lytic endopeptidases L1 and L5 from Lysobacter sp. strain XL1. Appl. Environ. Microbiol. 78, 7082–7089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, I., Kim, Y.O., Park, S.C., and Chun, J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.C. and Whang, K.S. 2021. Lysobacter telluris sp. nov., isolated from Korean rhizosphere soil. Arch. Microbiol. 203, 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Elderiny, N.S., Ten, L.N., Lee, S.Y., Kim, M.K., and Jung, H.Y. 2020. Lysobacter terrigena sp. nov., isolated from a Korean soil sample. Arch. Microbiol. 202, 637–643.

    Article  CAS  PubMed  Google Scholar 

  • Luo, G., Shi, Z., and Wang, G. 2012. Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int. J. Syst. Evol. Microbiol. 62, 1659–1665.

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Göker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  • Minnikin, D.E., Patel, P.V., Alshamaony, L., and Goodfellow, M. 1977. Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Bacteriol. 27, 104–117.

    Article  CAS  Google Scholar 

  • Na, S.I., Kim, Y.O., Yoon, S.H., Ha, S.M., Baek, I., and Chun, J. 2018. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 56, 280–285.

    Article  CAS  PubMed  Google Scholar 

  • Nawrocki, E.P. and Eddy, S.R. 2007. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput. Biol. 3, e56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palumbo, J.D., Sullivan, R.F., and Kobayashi, D.Y. 2003. Molecular characterization and expression in Escherichia coli of three β-1,3-glucanase genes from Lysobacter enzymogenes strain N4-7. J. Bacteriol. 185, 4362–4370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, G., Wang, Y., Qian, D., Fan, J., Hu, B., and Liu, F. 2012. Selection of available suicide vectors for gene mutagenesis using chiA (a chitinase encoding gene) as a new reporter and primary functional analysis of chiA in Lysobacter enzymogenes strain OH11. World J. Microbiol. Biotechnol. 28, 549–557.

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach, H. 2006. The genus Lysobacter. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.), The Prokaryotes, pp. 939–957. Springer, New York, USA.

    Chapter  Google Scholar 

  • Romanenko, L.A., Uchino, M., Tanaka, N., Frolova, G.M., and Mikhailov, V.V. 2008. Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int. J. Syst. Evol. Microbiol. 58, 370–374.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, New York, USA.

    Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark, Delaware, USA.

    Google Scholar 

  • Siddiqi, M.Z. and Im, W.T. 2016. Lysobacter hankyongensis sp. nov., isolated from activated sludge and Lysobacter sediminicola sp. nov., isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 66, 212–218.

    Article  CAS  PubMed  Google Scholar 

  • Singh, H., Du, J., Ngo, H.T.T., Won, K.H., Yang, J.E., Kim, K.Y., and Yi, T.H. 2015a. Lysobacter fragariae sp. nov. and Lysobacter rhizosphaerae sp. nov. isolated from rhizosphere of strawberry plant. Antonie van Leeuwenhoek 107, 1437–1444.

    Article  CAS  PubMed  Google Scholar 

  • Singh, H., Won, K.H., Du, J., Yang, J.E., Akter, S., Kim, K.Y., and Yi, T.H. 2015b. Lysobacter agri sp. nov., a bacterium isolated from soil. Antonie van Leeuwenhoek 108, 553–561.

    Article  CAS  PubMed  Google Scholar 

  • Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Kreig, N.R. (eds.), Methods for General and Molecular Bacteriology, pp. 607–654. American Society for Microbiology, Washington DC, USA.

    Google Scholar 

  • Srinivasan, S., Kim, M.K., Sathiyaraj, G., Kim, H.B., Kim, Y.J., and Yang, D.C. 2010. Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 60, 1543–1547.

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt, E. and Goebel, B.M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.

    Article  CAS  Google Scholar 

  • Weon, H.Y., Kim, B.Y., Kim, M.K., Yoo, S.H., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2007. Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int. J. Syst. Evol. Microbiol. 57, 548–551.

    Article  CAS  PubMed  Google Scholar 

  • Wick, R.R., Judd, L.M., Gorrie, C.L., and Holt, K.E. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie, B., Li, T., Lin, X., Wang, C.J., Chen, Y.J., Liu, W.J., and Zhao, Z.W. 2016. Lysobacter erysipheiresistens sp. nov., an antagonist of powdery mildew, isolated from tobacco-cultivated soil. Int. J. Syst. Evol. Microbiol. 66, 4016–4021.

    Article  CAS  PubMed  Google Scholar 

  • Xie, Y., Wright, S., Shen, Y., and Du, L. 2012. Bioactive natural products from Lysobacter. Nat. Prod. Rep. 29, 1277–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, L., Huang, X.X., Fan, D.L., and Sun, J.Q. 2020. Lysobacter alkalisoli sp. nov., a chitin-degrading strain isolated from saline-alkaline soil. Int. J. Syst. Evol. Microbiol. 70, 1273–1281.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Sheng, M., Yang, Z., Qiu, J., Zhang, J., Zhang, L., and He, J. 2021. Lysobacter gilvus sp. nov., isolated from activated sludge. Arch. Microbiol. 203, 7–11.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S.Z., Feng, G.D., Zhu, H.H., and Wang, Y.H. 2015. Lysobacter mobilis sp. nov., isolated from abandoned lead-zinc ore. Int. J. Syst. Evol. Microbiol. 65, 833–837.

    Article  CAS  PubMed  Google Scholar 

  • Ye, X.M., Chu, C.W., Shi, C., Zhu, J.C., He, Q., and He, J. 2015. Lysobacter caeni sp. nov., isolated from the sludge of a pesticide manufacturing factory. Int. J. Syst. Evol. Microbiol. 65, 845–850.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X.J., Yao, Q., Wang, Y.H., Yang, S.Z., Feng, G.D., and Zhu, H.H. 2019. Lysobacter silvisoli sp. nov., isolated from forest soil. Int. J. Syst. Evol. Microbiol. 69, 93–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chung-Ang University Research Scholarship Grants in 2020 and the Program for Collection of Domestic Biological Resources from the National Institute of Biological Resources (NIBR No. 2020-02-001) of the Ministry of Environment (MOE), Republic of Korea. We thank Prof. Aharon Oren for the valuable support on the nomenclature and etymology of strains R7T and R19T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Che Ok Jeon.

Additional information

Conflict of Interest

The authors declare no competing financial conflict of interest.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene and genome sequences of strains R7T and R19T are MN197915 and CP071517 and MW173243 and CP071518, respectively.

Supplemental material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.R., Kim, K.H., Khan, S.A. et al. Lysobacter arenosi sp. nov. and Lysobacter solisilvae sp. nov. isolated from soil. J Microbiol. 59, 709–717 (2021). https://doi.org/10.1007/s12275-021-1156-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1156-y

Keywords

Navigation