Skip to main content
Log in

UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Genome-based phylogeny plays a central role in the future taxonomy and phylogenetics of Bacteria and Archaea by replacing 16S rRNA gene phylogeny. The concatenated core gene alignments are frequently used for such a purpose. The bacterial core genes are defined as single-copy, homologous genes that are present in most of the known bacterial species. There have been several studies describing such a gene set, but the number of species considered was rather small. Here we present the up-to-date bacterial core gene set, named UBCG, and software suites to accommodate necessary steps to generate and evaluate phylogenetic trees. The method was successfully used to infer phylogenomic relationship of Escherichia and related taxa and can be used for the set of genomes at any taxonomic ranks of Bacteria. The UBCG pipeline and file viewer are freely available at https://www.ezbiocloud.net/tools/ubcg and https://www.ezbiocloud.net/tools/ubcg_viewer, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ankenbrand, M.J. and Keller, A. 2016. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 59, 783–791.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J. and Rainey, F.A. 2014. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int. J. Syst. Evol. Microbiol. 64, 316–324.

    Article  PubMed  Google Scholar 

  • Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D.R., da Costa, M.S., Rooney, A.P., Yi, H., Xu, X.W., De Meyer, S., et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68, 461–466.

    Article  PubMed  Google Scholar 

  • Creevey, C.J., Doerks, T., Fitzpatrick, D.A., Raes, J., and Bork, P. 2011. Universally distributed single-copy genes indicate a constant rate of horizontal transfer. PLoS One 6, e22099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darling, A.E., Jospin, G., Lowe, E., Matsen, F.I., Bik, H.M., and Eisen, J.A. 2014. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2, e243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupont, C.L., Rusch, D.B., Yooseph, S., Lombardo, M.J., Richter, R.A., Valas, R., Novotny, M., Yee-Greenbaum, J., Selengut, J.D., Haft, D.H., et al. 2012. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 6, 1186–1199.

    Article  CAS  PubMed  Google Scholar 

  • Eddy, S.R. 2011. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Eisen, J.A. and Fraser, C.M. 2003. Phylogenomics: intersection of evolution and genomics. Science 300, 1706–1707.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence-limits on phylogenies–an approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  • Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285.

    Article  CAS  PubMed  Google Scholar 

  • Fox, G.E., Wisotzkey, J.D., and Jurtshuk, P.J. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42, 166–170.

    Article  CAS  PubMed  Google Scholar 

  • Haft, D.H., Selengut, J.D., Richter, R.A., Harkins, D., Basu, M.K., and Beck, E. 2013. TIGRFAMs and genome properties in 2013. Nucleic Acids Res. 41, D387–D395.

    Article  CAS  PubMed  Google Scholar 

  • Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon, Y.S., Lee, K., Park, S.C., Kim, B.S., Cho, Y.J., Ha, S.M., and Chun, J. 2014. EzEditor: a versatile sequence alignment editor for both rRNA-and protein-coding genes. Int. J. Syst. Evol. Microbiol. 64, 689–691.

    Article  CAS  PubMed  Google Scholar 

  • Katoh, K. and Standley, D.M. 2013. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price, M.N., Dehal, P.S., and Arkin, A.P. 2010. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radford, A.D., Chapman, D., Dixon, L., Chantrey, J., Darby, A.C., and Hall, N. 2012. Application of next-generation sequencing technologies in virology. J. Gen. Virol. 93, 1853–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, J.F., Darling, A., Malfatti, S., Swan, B.K., Gies, E.A., et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437.

    Article  CAS  PubMed  Google Scholar 

  • Rosselló-Mora, R. and Amann, R. 2001. The species concept for prokaryotes. FEMS Microbiol. Rev. 25, 39–67.

    Article  PubMed  Google Scholar 

  • Shih, P.M., Wu, D.Y., Latifi, A., Axen, S.D., Fewer, D.P., Talla, E., Calteau, A., Cai, F., de Marsac, N.T., Rippka, R., et al. 2013. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl. Acad. Sci. USA 110, 1053–1058.

    Article  PubMed  Google Scholar 

  • Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagini, F. and Greub, G. 2017. Bacterial genome sequencing in clinical microbiology: a pathogen-oriented review. Eur. J. Clin. Microbiol. Infect. Dis. 36, 2007–2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D., Hugenholtz, P., Mavromatis, K., Pukall, R., Dalin, E., Ivanova, N.N., Kunin, V., Goodwin, L., Wu, M., Tindall, B.J., et al. 2009. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature 462, 1056–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D.Y., Jospin, G., and Eisen, J.A. 2013. Systematic identification of gene families for use as markers for phylogenetic and phylogeny-driven ecological studies of bacteria and archaea and their major subgroups. PLoS One 8, e77033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongsik Chun.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, SI., Kim, Y.O., Yoon, SH. et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol. 56, 280–285 (2018). https://doi.org/10.1007/s12275-018-8014-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8014-6

Keywords

Navigation