Skip to main content
Log in

Lysobacter tyrosinelyticus sp. nov. isolated from Gyeryongsan national park soil

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A novel Gram-negative, rod-shaped (0.2–0.5 μm × 1.5–2.5 μm), aerobic, non-motile bacterium was isolated from Gyeryongsan national park soil, Republic of Korea. The novel isolate was designated as THG-DN8.2T. The strain grows optimally at 28°C, at pH 7 and in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequence showed that the novel isolate shared the highest sequence similarity with Lysobacter oryzae KCTC 22249T followed by Lysobacter yangpyeongensis KACC 11407T and Lysobacter niabensis KACC 11587T. The DNA G+C content of strain THG-DN8.2T is 66.0 mol% and ubiquinone Q-8 is the main isoprenoid quinone. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidyl-N-methylethanolamine. The major fatty acids of strain THG-DN8.2T were identified as iso-C15:0, iso-C16:0, and C16:1 ω7с alcohol. The phylogenetic distinctiveness and phenotypic characteristics differentiated strain THG-DN8.2T from closely related Lysobacter species. The results of polyphasic taxonomic analysis suggest that strain THG-DN8.2T represents a novel species of the genus Lysobacter, for which the name Lysobacter tyrosinelyticus sp. nov. is proposed. The type strain is THG-DN8.2T (=KCTC 42235T =JCM 30320T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, K., Chohnan, S., Ohashi, H., Hirata, T., Masaki, T., and Sakiyama, F. 2003. Purification, bacteriolytic activity, and specificity of b-lytic protease from Lysobacter sp. IB-9374. J. Biosci. Bioeng. 95, 27–34.

    Article  Google Scholar 

  • Aslam, Z., Yasir, M., Jeon, C.O., and Chung, Y.R. 2009. Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). Int. J. Syst. Evol. Microbiol. 59, 675–680.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, W.B. 1946. Urea decomposition as a means of differentiating proteus and paracolon cultures from each other and from Salmonella and Shigella types. J. Bacteriol. 52, 461–466.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christensen, P. and Cook, F.D. 1978. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int. J. Syst. Bacteriol. 28, 367–393.

    Article  Google Scholar 

  • Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45, 316–354.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fautz, E. and Reichenbach, H. 1980. A simple test for flexirubintype pigments. FEMS Microbiol. Ecol. 8, 87–91.

    Article  CAS  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.

    Article  Google Scholar 

  • Folman, L.B., De Klein, M.J.E.M., Postma, J., and Van Veen, J.A. 2004. Production of antifungal compounds by Lysobacter enzymogenes isolate 3.1 T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biol. Control 31, 145–154.

    Article  CAS  Google Scholar 

  • Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.

    Article  CAS  Google Scholar 

  • Islam, M.T., Hashidoko, Y., Deora, A., Ito, T., and Tahara, S. 2005. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soil borne peronosporomycetes. Appl. Environ. Microbiol. 71, 3786–3796.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Kilic-Ekici, O. and Yuen, G.Y. 2004. Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. Biol. Control 30, 446–455.

    Article  CAS  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Lee, J.W., Im, W.T., Kim, M.K., and Yang, D.C. 2006. Lysobacter koreensis sp. nov., isolated from a ginseng field. Int. J. Syst. Evol. Microbiol. 56, 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., Liu, Y., Wang, Y., Luo, X., Dai, J., and Fang, C. 2011. Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int. J. Syst. Evol. Microbiol. 61, 433–437.

    Article  CAS  PubMed  Google Scholar 

  • Luo, G., Shi, Z., and Wang, G. 2012. Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int. J. Syst. Evol. Microbiol. 62, 1659–1665.

    Article  CAS  PubMed  Google Scholar 

  • Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    Article  CAS  Google Scholar 

  • Minnikin, D.E., ODonnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  • Moore, D.D. and Dowhan, D. 1995. Preparation and analysis of DNA. In Ausubel F.W., Brent R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K. (eds.). Current protocols in molecular biology, pp 2–11. Wiley, New York, USA.

    Google Scholar 

  • Park, J.H., Kim, R., Aslam, Z., Jeon, C.O., and Chung, Y.R. 2008. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int. J. Syst. Evol. Microbiol. 58, 387–392.

    Article  CAS  PubMed  Google Scholar 

  • Palumbo, J.D., Sullivan, R.F., and Kobayashi, D.Y. 2003. Molecular characterization and expression in Escherichia coli of three ß- 1,3-glucanase genes for Lysobacter enzymogenes strain N4-7. J. Bacteriol. 185, 4362–4370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romanenko, L.A., Uchino, M., Tanaka, N., Frolova, G.M., and Mikhailov, V.V. 2008. Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int. J. Syst. Evol. Microbiol. 58, 370–374.

    Article  CAS  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. DE: MIDI Inc, Newark, USA.

    Google Scholar 

  • Skerman, V.B.D. 1967. A guide to the identification of the genera of bacteria, 2nd edition, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Srinivasan, S., Kim, M.K., Sathiyaraj, G., Kim, H.B., Kim, Y.J., and Yang, D.C. 2010. Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 60, 1543–1547.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamaoka, J., Katayama-Fujiruma, A., and Kuraishi, H. 1983. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J. Appl. Bacieriol. 54, 31–36.

    Article  CAS  Google Scholar 

  • Ten, L.N., Jung, H., Im, W.T., Yoo, S.A., Oh, H.M., and Lee, S.T. 2009. Lysobacter panaciterrae sp. nov., isolated from soil of ginseng field. Int. J. Syst. Evol. Microbiol. 59, 958–963.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, Y., Dai, J., Zhang, L., Luo, X., Li, Y., Chen, G., Tang, Y., Meng, Y., and Fang, C. 2009. Lysobacter ximonensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 59, 786–789.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G.L., Wang, L., Chen, H.H., Shen, B., Li, S.P., and Jiang, J.D. 2011. Lysobacter ruishenii sp. nov., a chlorothalonil degrading bacterium isolated from a long-term chlorothalonil-contaminated soil. Int. J. Syst. Evol. Microbiol. 61, 674–679.

    Article  CAS  PubMed  Google Scholar 

  • Wei, D.Q., Yu, T.T., Yao, J.C., Zhou, E.M., and Song, Z.Q. 2012. Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south–west China. Antonie van Leeuwenhoek 102, 643–651.

    Article  CAS  PubMed  Google Scholar 

  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weon, H.Y., Kim, B.Y., Baek, Y.K., Yoo, S.H., Kwon, S.W., Stackebrandt, E., and Go, S.J. 2006. Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int. J. Syst. Evol. Microbiol. 56, 947–951.

    Article  CAS  PubMed  Google Scholar 

  • Weon, H.Y., Kim, B.Y., Kim, M.K., Yoo, S.H., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2007. Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int. J. Syst. Evol. Microbiol. 57, 548–551.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S.Z., Feng, G.D., Zhu, H.H., and Wang, Y.H. 2015. Lysobacter mobilis sp. nov., isolated from abandoned lead-zinc ore. Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.000026.

    Google Scholar 

  • Yassin, A.F., Chen, W.M., Hupfer, H., Siering, C., Kroppenstedt, R.M., Arun, A.B., Lai, W.A., Shen, F.T., Rekha, P.D., and Young, C.C. 2007. Lysobacter defluvii sp. nov., isolated from municipal solid waste. Int. J. Syst. Evol. Microbiol. 57, 1131–1136.

    Article  CAS  PubMed  Google Scholar 

  • Yu, T.T., Zhou, E.M., Yin, Y.R., Yao, J.C., Ming, H., Dong, L., Li, S., Nie, G.X., and Li, W.J. 2013. Vulcaniibacterium tengchongense gen. nov., sp. nov. isolated from a geothermally heated soil sample, and reclassification of Lysobacter thermophiles Wei et al. 2012 as Vulcaniibacterium thermophilum comb. nov. Antonie van Leeuwenhoek 104, 369–376.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Bai, J., Wang, Y., Wu, J.L., Dai, J., and Fang, C.X. 2011. Lysobacter korlensis sp. nov. and Lysobacter bugurensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61, 2259–2265.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z. and Yuen, G.Y. 2000a. Effects of culture fluids and preinduction of chitinase production on biocontrol of Bipolaris leaf spot by Stenotrophomonas maltophilia C3. Biol. Control 18, 277–286.

    Article  Google Scholar 

  • Zhang, Z. and Yuen, G.Y. 2000b. The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathology 90, 384–389.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Yuen, G.Y., Sarath, G., and Penheiter, A. 2001. Chitinases from the plant disease biocontrol agent, Stenotrophomonas maltophilia C3. Phytopathology 91, 204–211.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hoo Yi.

Additional information

These authors equally contributed to this work.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Singh, H., Ngo, H.T.T. et al. Lysobacter tyrosinelyticus sp. nov. isolated from Gyeryongsan national park soil. J Microbiol. 53, 365–370 (2015). https://doi.org/10.1007/s12275-015-4729-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-4729-9

Keywords

Navigation