Skip to main content
Log in

Lysobacter fragariae sp. nov. and Lysobacter rhizosphaerae sp. nov. isolated from rhizosphere of strawberry plant

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

An Erratum to this article was published on 24 April 2015

Abstract

Two bacterial strains, designated THG-DN8.7T and THG-DN8.3T, were isolated from the rhizosphere of a strawberry plant in Gyeryong Mountain, South Korea. Cells of both isolates were observed to be Gram-negative, yellow-coloured and rod-shaped. Comparative 16S rRNA gene sequence analysis showed that strain THG-DN8.7T had highest sequence similarities to Lysobacter yangpyeongensis KACC 11407T (97.2 %), Lysobacter niabensis KACC 11587T (97.0 %) and Lysobacter oryzae KCTC 22249T (96.9 %), while strain THG-DN8.3T had closely similarity with L. niabensis KACC 11587T (98.1 %), L. oryzae KCTC 22249T (97.1 %) and L. yangpyeongensis KACC 11407T (96.1 %). DNA–DNA relatedness values between strains THG-DN8.7T and THG-DN8.3T and their closest phylogenetically neighbours were below 30.0 %, which indicates that strains THG-DN8.7T and THG-DN8.3T represent distinct species within the genus Lysobacter. Both strains were found to contain iso-C15:0, iso-C16:0 and iso-C17:1 ω9c as predominant fatty acids and ubiquinone-8 as major isoprenoid quinone. The major polar lipids were identified as phosphatidylethanolamine, phosphatidyl-N-methylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content of strains THG-DN8.7T and THG-DN8.3T were determined to be 66.9 and 67.8 mol%, respectively. These data are consistent with the affiliation of the two new species represented by THG-DN8.7T and THG-DN8.3T to the genus Lysobacter. The names Lysobacter fragariae sp. nov. and Lysobacter rhizosphaerae sp. nov. are proposed for these species with the type strains THG-DN8.7T (=KCTC 42236T = JCM 30322T) and THG-DN8.3T (=KCTC 42237T = JCM 30321T), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28:367–393

    Article  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Hall TA (1999). BioEdit: a user–friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series 41: 95–98

  • Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high–performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon–e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lee JW, Im WT, Kim MK, Yang DC (2006) Lysobacter koreensis sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 56:231–235

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Hameed A, Wen CZ, Liu YC, Hsu YH, Lai WA, Young CC (2015) Lysobacter lycopersici sp. nov., isolated from tomato plant Solanum lycopersicum. Antonie van Leeuwenhoek. doi:10.1007/s10482-015-0419-1

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE, O’Donnel AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parleet JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Moore DD, Dowhan D (1995) Preparation and Analysis of DNA. In: Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2–11

    Google Scholar 

  • Ngo HTT, Won K, Du J, Son HM, Park Y, MooChang K, Kim KY, Jin FX, Yi TH (2014) Lysobacter terrae sp. nov. isolated from Aglaia odorata rhizosphere soil. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.067397-0

    Google Scholar 

  • Park JH, Kim R, Aslam Z, Jeon CO, Chung YR (2008) Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. 341. Int J Syst Evol Microbiol 58:387–392

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor–joining method: a new method for reconstructing phylogenetic trees. Mol Bio Evol 4:406–425

    CAS  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark: MIDI Inc

  • Skerman VBD (1967) A Guide to the Identification of the Genera of Bacteria, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Stabili L, Gravili C, Tredici SM, Piraino S, Talà A, Boero F, Alifano P (2008) Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 56:625–636

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849

    CAS  Google Scholar 

  • Tamaoka J, Katayama-Fujiruma A, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacieriol 54:31–36

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  • Wei DQ, Yu TT, Yao JC, Zhou EM, Song ZQ (2012) Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south–west China. Antonie Van Leeuwenhoek 102:643–651

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang SZ, Feng GD, Zhu HH, Wang YH (2014) Lysobacter mobilis sp. nov., isolated from abandoned lead–zinc ore. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.000026

    Google Scholar 

  • Ye XM, Chu CW, Shi C, Zhu JC, He Q, He J (2014) Lysobacter caeni sp. nov., isolated from the sludge of pesticide manufacturing factory. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.000026

    Google Scholar 

  • Yu TT, Zhou EM, Yin YR, Yao JC, Ming H, Dong L, Li S, Nie GX, Li WJ et al (2013) Vulcaniibacterium tengchongense gen. nov., sp. nov. isolated from a geothermally heated soil sample, and reclassification of Lysobacter thermophilus Wei et al. 2012 as Vulcaniibacterium thermophilumcomb. nov. Antonie Van Leeuwenhoek 104:369–376

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was conducted under the industrial infrastructure program (No. N0000888) for fundamental technologies which is funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hoo Yi.

Additional information

Hina Singh and Juan Du have equally contributed to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Du, J., Ngo, H.T.T. et al. Lysobacter fragariae sp. nov. and Lysobacter rhizosphaerae sp. nov. isolated from rhizosphere of strawberry plant. Antonie van Leeuwenhoek 107, 1437–1444 (2015). https://doi.org/10.1007/s10482-015-0439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0439-x

Keywords

Navigation