Skip to main content
Log in

Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel bacterial strain, designated KVB24T, was isolated from sea-water of Busan Harbour in South Korea. Cells of strain KVB24T were Gram-stain negative, aerobic, rod shaped and non-motile. Strain KVB24T grew optimally at 25–28 °C and pH 6.5–7.0. Based on 16S rRNA gene sequence analysis, strain KVB24T was shown to belong to the genus Lysobacter within the class Gammaproteobacteria and to be closely related to Lysobacter dokdonensis DS-58T, Lysobacter hankyongensis KTce-2T and Lysobacter niastensis GH41-7T. DNA–DNA relatedness between strain KVB24T and its current closest relative was below 70%. The predominant fatty acids of strain KVB24T were iso-C11:0, iso-C11:0 3-OH, iso-C14:0, iso-C15:0, anteiso-C15:0, iso-C16:0 and summed feature 9 comprising (iso-C17:1 ω9c and/or 10 methyl C16:0); the prominent isoprenoid was Q-8 and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The G + C content of genomic DNA from strain KVB24T was determined to be 67.5 mol%. Based on the phenotypic, genotypic and chemotaxonomic analyses, strain KVB24T represents a novel species of the genus Lysobacter, for which the name Lysobacter caseinilyticus sp. nov. is proposed. The type strain is KVB24T (= KACC19816T = JCM32879T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman J et al (eds) (1995) Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology, 3rd edn. Wiley, New York

    Google Scholar 

  • Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070

    CAS  PubMed  Google Scholar 

  • Breznak JA, Costilow RN (2007) Physicochemical factors in growth. In: Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular bacteriology, 3rd edn. American Society for Microbiology, Washington, DC, pp 309–329

    Google Scholar 

  • Buck JD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chhetri G, Yang D, Choi J et al (2018a) Edaphorhabdus rosea gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from soil in South Korea. Antonie Van Leeuwenhoek 111:2385. https://doi.org/10.1007/s10482-018-1127-4

    Article  CAS  PubMed  Google Scholar 

  • Chhetri G, Yang D, Choi J et al (2018b) Flavobacterium edaphi sp. nov., isolated from soil from Jeju Island, Korea. Arch Microbiol. https://doi.org/10.1007/s00203-018-1593-0

    Article  PubMed  Google Scholar 

  • Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst bacterial 28:367–393

    Article  Google Scholar 

  • Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbial Rev 45:316–354

    CAS  Google Scholar 

  • De Ley J, Cattoir JH, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  • Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. FEMS Microbiol Ecol 8:87–91

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fukuda W, Kimura T, Araki S, Miyoshi Y, Atomi H, Imanaka T (2013) Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int J Syst Evol Microbiol 63:3313–3318

    Article  CAS  PubMed  Google Scholar 

  • Gillis M, Ley JD, Cleene MD (1970) The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JM, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773

    Article  CAS  PubMed  Google Scholar 

  • Hall T (1997) BioEdit. Biological sequence alignment editor for Win 95/98/NT/2 K/XP. Ibis Therapeutics, Carlsbad

  • Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469

    Article  CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbial 62:716–721

    Article  CAS  Google Scholar 

  • Kim S-J, Ahn J-H, Weon H-Y, Hong S-B, Seok S-J, Kim J-S, Kwon S-W (2015) Lysobacter terricola sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 66:1401–1406

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki KI (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–205

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) Mega 7: molecular evolutionary genetics analysis in version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 38:358–361

    CAS  Google Scholar 

  • Lin SY, Hameed A, Wen CZ, Liu YC, Hsu YH, Lai WA, Young CC (2014) Lysobacter lycopersici sp. nov., isolated from tomato plant Solanum lycopersicum. Antonie Van Leeuwenhoek 107:1261–1270

    Article  CAS  Google Scholar 

  • Liu M, Liu Y, Wang Y, Luo X, Dai J, Fang C (2011) Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 61:433–437

    Article  CAS  PubMed  Google Scholar 

  • Loveland-Curtze J, Miteva VI, Brenchley JE, Vanya IM, Jean EB (2011) Evaluation of a new fluorimetric DNA–DNA hybridization method. Can J Microbiol 57:250–255

    Article  CAS  PubMed  Google Scholar 

  • Luo G, Shi Z, Wang G (2012) Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int J Syst Evol Microbiol 62:1659–1665

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Dong H, Zhou M, Huang Y, Zhang H, He W, An L (2019) Lysobacter psychrotolerans sp. nov., isolated from soil in the Tianshan Mountains, Xinjiang, China. Int J Syst Evol Microbiol 0.003213

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Ngo HT, Won K, Du J, Son HM, Park Y, Moo Chang K, Kim KY, Jin FX, Yi TH (2015) Lysobacter terrae sp. nov. isolated from Aglaia odorata rhizosphere soil. Int J Syst Evol Microbiol 65:587–592

    Article  CAS  PubMed  Google Scholar 

  • Oh KH, Kang SJ, Jung YT, Oh TK, Yoon JH (2011) Lysobacter dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Panthee S, Hamamoto H, Paudel A, Sekimizu K (2016) Lysobacter species: a potential source of novel antibiotics. Arch Microbial 198:839–845

    Article  CAS  Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Siddiqi MZ, Im WT (2015) Lysobacter hankyongensis sp. nov., isolated from activated sludge and Lysobacter sediminicola sp. nov., isolated from fresh water sediment. Int J Syst Evol Microbiol 66(2016):212–218

    PubMed  Google Scholar 

  • Siddiqi MZ, Im WT (2016) Arch Microbiol 198:551. https://doi.org/10.1007/s00203-016-1214-8

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Du J, Won KH, Yang JE, Akter S, Kim KY, Yi TH (2015) Lysobacter novalis sp. nov., isolated from fallow farmland soil. Int J Syst Evol Microbiol 65:3131–3136

    Article  CAS  PubMed  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Wang L, Chen HH, Shen B, Li SP, Jiang JD (2011) Lysobacter ruishenii sp. nov., a chlorothalonil-degrading bacterium isolated from a long-term chlorothalonil-contaminated soil. Int J Syst Evol Microbiol 61:674–679

    Article  CAS  PubMed  Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

  • Wei DQ, Yu TT, Yao JC, Zhou EM, Song ZQ, Yin YR, Ming H, Tang SK, Li WJ (2012) Lysobacter thermophilus sp. nov., isolated from a geothermal soil sample in Tengchong, south-west China. Antonie Van Leeuwenhoek 102:643–651

    Article  CAS  PubMed  Google Scholar 

  • Weon HY, Kim BY, Baek YK, Yoo SH, Kwon SW, Stackebrandt E, Go SJ (2006) Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol 56:947–951

    Article  CAS  PubMed  Google Scholar 

  • Weon HY, Kim BY, Kim MK, Yoo SH, Kwon SW, Go SJ, Stackebrandt E (2007) Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol 57:548–551

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Wright S, Shen Y, Du L (2012) Bioactive natural products from Lysobacter. Nat Prod Rep 29:1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SZ, Feng GD, Zhu HH, Wang YH (2015) Lysobacter mobilis sp. nov., isolated from abandoned lead-zinc ore. Int J Syst Evol Microbiol 65:833–837

    Article  CAS  PubMed  Google Scholar 

  • Ye XM, Chu CW, Shi C, Zhu JC, He Q et al (2015) Lysobacter caeni sp. nov., isolated from the sludge of a pesticide manufacturing factory. Int J Syst Evol Microbiol 65:845–850

    Article  CAS  PubMed  Google Scholar 

  • Zang L, Bai WY, Wu GL, Dai J, Fang CX (2011) Lysobacter korlensis sp. nov. and Lysobacter bugurensis sp. nov., isolated from soil. Int J Syst Evol Microbial 61:2259–2265

    Article  CAS  Google Scholar 

  • Zhang XJ, Yao Q, Wang YH, Yang SZ, Feng GD, Zhu HH (2018) Lysobacter silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbial 69:93–98

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Environmental Research, Republic of Korea. We thank Prof Dr. Bernhard Schink (University of Konstanz, Konstanz, Germany) for the suggested genus and species names.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taegun Seo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical standards

This study does not describe any experimental work related to human.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank accession number for the 16S rRNA gene sequence of strain KVB24T is MK177529.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1023 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhetri, G., Kim, J., Kim, I. et al. Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water. Antonie van Leeuwenhoek 112, 1349–1356 (2019). https://doi.org/10.1007/s10482-019-01267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01267-7

Keywords

Navigation