Skip to main content
Log in

The synergy effect of arbuscular mycorrhizal fungi symbiosis and exogenous calcium on bacterial community composition and growth performance of peanut (Arachis hypogaea L.) in saline alkali soil

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Peanut (Arachis hypogaea. L) is an important oil seed crop. Both arbuscular mycorrhizal fungi (AMF) symbiosis and calcium (Ca2+) application can ameliorate the impact of saline soil on peanut production, and the rhizosphere bacterial communities are also closely correlated with peanut salt tolerance; however, whether AMF and Ca2+ can withstand high-salinity through or partially through modulating rhizosphere bacterial communities is unclear. Here, we used the rhizosphere bacterial DNA from saline alkali soil treated with AMF and Ca2+ alone or together to perform high-throughput sequencing of 16S rRNA genes. Taxonomic analysis revealed that AMF and Ca2+ treatment increased the abundance of Proteobacteria and Firmicutes at the phylum level. The nitrogen-fixing bacterium Sphingomonas was the dominant genus in these soils at the genus level, and the soil invertase and urease activities were also increased after AMF and Ca2+ treatment, implying that AMF and Ca2+ effectively improved the living environment of plants under salt stress. Moreover, AMF combined with Ca2+ was better than AMF or Ca2+ alone at altering the bacterial structure and improving peanut growth in saline alkali soil. Together, AMF and Ca2+ applications are conducive to peanut salt adaption by regulating the bacterial community in saline alkali soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates, S.T., Clemente, J.C., Flores, G.E., Walters, W.A., Parfrey, L.W., Knight, R., and Fierer, N. 2013. Global biogeography of highly diverse protistan communities in soil. ISME J. 7, 652–659.

    Article  CAS  PubMed  Google Scholar 

  • Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., and Abebe, E. 2005. Defining operational taxonomic units using DNA barcode data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1935–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camprubí, A., Calvet, C., and Estaún, V. 1995. Growth enhancement of Citrus reshni after inoculation with Glomus intraradices and Trichoderma aureoviride and associated effects on microbial populations and enzyme activity in potting mixes. Plant Soil 173, 233–238.

    Article  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty, K., Bhaduri, D., Meena, H.N., and Kalariya, K. 2016. External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol. Biochem. 103, 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Cui, L., Guo, F., Zhang, J., Yang, S., Meng, J.J., Geng, Y., Li, X., and Wan, S. 2019. Synergy of arbuscular mycorrhizal symbiosis and exogenous Ca2+ benefits peanut (Arachis hypogaea L.) growth through the shared hormone and flavonoid pathway. Sci. Rep. 9, 16281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dagher, D.J., de la Providencia, I.E., Pitre, F.E., St-Arnaud, M., and Hijri, M. 2020. Arbuscular mycorrhizal fungal assemblages significantly shifted upon bacterial inoculation in non-contaminated and petroleum-contaminated environments. Microorganisms 8, 602.

    Article  CAS  PubMed Central  Google Scholar 

  • Dai, L., Zhang, G., Yu, Z., Ding, H., Xu, Y., and Zhang, Z. 2019. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil. Int. J. Mol. Sci. 20, 2265.

    Article  CAS  PubMed Central  Google Scholar 

  • Damodharan, K., Palaniyandi, S.A., Le, B., Suh, J.W., and Yang, S.H. 2018. Streptomyces sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato (Solanum lycopersicum cv. Micro-Tom). J. Microbiol. 56, 753–759.

    Article  CAS  PubMed  Google Scholar 

  • Deinlein, U., Stephan, A.B., Horie, T., Luo, W., Xu, G., and Schroeder, J.I. 2014. Plant salt-tolerance mechanisms. Trends Plant Sci. 19, 371–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dindar, E., Şağban, F.O.T., and Başkaya, H.S. 2015. Evaluation-of soil enzyme activities as soil quality indicators in sludge-amended soils. J. Environ. Biol. 36, 919–926.

    CAS  PubMed  Google Scholar 

  • Doolotkeldieva, T., Konurbaeva, M., and Bobusheva, S. 2018. Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. Environ. Sci. Pollut. Res. 25, 31848–31862.

    Article  CAS  Google Scholar 

  • Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva, D., Wirth, S., Li, L., Abd-Allah, E.F., and Lindström, K. 2017. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered 8, 433–438.

    Article  CAS  PubMed  Google Scholar 

  • Fierer, N., Jackson, J.A., Vilgalys, R., and Jackson, R.B. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71, 4117–4120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, C., Zhang, S., Han, P., Hu, X., Xie, L., Li, Y., Brooks, M., Liao, X., and Qin, L. 2019. Soil enzyme activity in soils subjected to flooding and the effect on nitrogen and phosphorus uptake by oilseed rape. Front. Plant Sci. 10, 368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Halilou, O., Hissene, H.M., Clavijo Michelangeli, J.A., Hamidou, F., Sinclair, T.R., Soltani, A., Mahamane, S., and Vadez, V. 2016. Determination of coefficient defining leaf area development in different genotypes, plant types and planting densities in peanut (Arachis hypogeae L.). Field Crops Res. 199, 42–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, F., Sun, M., He, W., Cui, X., Pan, H., Wang, H., Song, F., Lou, Y., and Zhuge, Y. 2019. Ameliorating effects of exogenous Ca2+ on foxtail millet seedlings under salt stress. Funct. Plant Biol. 46, 407–416.

    Article  CAS  PubMed  Google Scholar 

  • Ilangumaran, G. and Smith, D.L. 2017. Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front. Plant Sci. 8, 1768.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji, H., Pardo, J.M., Batelli, G., Van Oosten, M.J., Bressan, R.A., and Li, X. 2013. The salt overly sensitive (SOS) pathway: established and emerging roles. Mol. Plant 6, 275–286.

    Article  CAS  PubMed  Google Scholar 

  • Karamipour, N., Fathipour, Y., and Mehrabadi, M. 2016. Gamma-proteobacteria as essential primary symbionts in the striped shield bug, Graphosoma Lineatum (Hemiptera: Pentatomidae). Sci. Rep. 6, 33168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavamura, V.N., Hayat, R., Clark, I.M., Rossmann, M., Mendes, R., Hirsch, P.R., and Mauchline, T.H. 2018. Inorganic nitrogen application affects both taxonomical and predicted functional structure of wheat rhizosphere bacterial communities. Front. Microbiol. 9, 1074.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight, H. 2000. Calcium signaling during abiotic stress in plants. Int. Rev. Cytol. 195, 269–324.

    Article  CAS  PubMed  Google Scholar 

  • Kostka, J.E., Prakash, O., Overholt, W.A., Green, S.J., Freyer, G., Canion, A., Delgardio, J., Norton, N., Hazen, T.C., and Huettel, M. 2011. Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl. Environ. Microbiol. 77, 7962–7974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung, K.T., Chang, Y.J., Gan, Y.D., Peacock, A., Macnaughton, S.J., Stephen, J.R., Burkhalter, R.S., Flemming, C.A., and White, D.C. 1999. Detection of Sphingomonas spp in soil by PCR and sphingo-lipid biomarker analysis. J. Ind. Microbiol. Biotechnol. 23, 252–260.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Chen, J., Wu, L., Luo, X., Li, N., Arafat, Y., Lin, S., and Lin, W. 2018. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems. Int. J. Mol. Sci. 19, 622.

    Article  CAS  PubMed Central  Google Scholar 

  • Liang, H., Wang, X., Yan, J., and Luo, L. 2019. Characterizing the intra-vineyard variation of soil bacterial and fungal communities. Front. Microbiol. 10, 1239.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., del Rio, T.G., et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mickelbart, M.V., Hasegawa, P.M., and Bailey-Serres, J. 2015. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet. 16, 237–251.

    Article  CAS  PubMed  Google Scholar 

  • Naylor, D., DeGraaf, S., Purdom, E., and Coleman-Derr, D. 2017. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 11, 2691–2704.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng, R.H., Xiong, A.S., Xue, Y., Fu, X.Y., Gao, F., Zhao, W., Tian, Y.S., and Yao, Q.H. 2008. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 32, 927–955.

    Article  CAS  PubMed  Google Scholar 

  • Qin, H., Brookes, P.C., and Xu, J. 2016. Arbuscular mycorrhizal fungal hyphae alter soil bacterial community and enhance polychlorinated biphenyls dissipation. Front. Microbiol. 7, 939.

    PubMed  PubMed Central  Google Scholar 

  • Quintero, F.J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W.Y., Ali, Z., Fujii, H., Mendoza, I., Yun, D.J., Zhu, J.K., et al. 2011. Activation of the plasma membrane Na/H antiporter salt-overlysensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc. Natl. Acad. Sci. USA 108, 2611–2616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders, D., Pelloux, J., Brownlee, C., and Harper, J.F. 2002. Calcium at the crossroads of signaling. Plant Cell 14, S401–S417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tisarum, R., Theerawitaya, C., Samphumphuang, T., Polispitak, K., Thongpoem, P., Singh, H.P., and Cha-Um, S. 2020. Alleviation of salt stress in upland rice (Oryza sativa L. ssp. indica cv. Leum Pua) using arbuscular mycorrhizal fungi inoculation. Front. Plant Sci. 11, 348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toljander, J.F., Lindahl, B.D., Paul, L.R., Elfstrand, M., and Finlay, R.D. 2007. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol. Ecol. 61, 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Ullah, A., Akbar, A., Luo, Q., Khan, A.H., Manghwar, H., Shaban, M., and Yang, X. 2018. Microbiome diversity in cotton rhizosphere under normal and drought conditions. Microb. Ecol. 77, 429–439.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Sheng, H.F., He, Y., Wu, J.Y., Jiang, Y.X., Tam, N.F., and Zhou, H.W. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264–8271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, C.H. and Yokota, A. 2006. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int. J. Syst. Evol. Microbiol. 56, 889–893.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Yu, Z., Zhang, S., Wu, C., Yang, G., Yan, K., Zheng, C., and Huang, J. 2019. CYSTM3 negatively regulates salt stress tolerance in Arabidopsis. Plant Mol. Biol. 99, 395–406.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Zhang, D., Dai, L., Ding, H., Ci, D., Qin, F., Zhang, G., and Zhang, Z. 2020a. Influence of salt stress on growth of spermosphere bacterial communities in different peanut (Arachis hypogaea L.) cultivars. Int. J. Mol. Sci. 21, 2131.

    Article  CAS  PubMed Central  Google Scholar 

  • Xu, Y., Zhang, G., Ding, H., Ci, D., Dai, L., and Zhang, Z. 2020b. Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.). Int. Microbiol. 23, 453–465.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, B.K. and Tarafdar, J.C. 2007. Ability of Emericella rugulosa to mobilize unavailable P compounds during Pearl millet [Pennisetum glaucum (L.) R. Br.] crop under arid condition. Indian J. Microbiol. 47, 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, T., Aharon, G.S., Sottosanto, J.B., and Blumwald, E. 2005. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc. Natl. Acad. Sci. USA 102, 16107–16112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. and Guo, Y. 2018. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 60, 796–804.

    Article  CAS  PubMed  Google Scholar 

  • Yao, R., Yang, J., Wu, D., Xie, W., Gao, P., and Jin, W. 2016. Digital mapping of soil salinity and crop yield across a coastal agricultural landscape using repeated electromagnetic induction (EMI) surveys. PLoS ONE 11, e0153377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., and Xia, G. 2020a. How plant hormones mediate salt stress responses. Trends Plant Sci. Online now. doi: https://doi.org/10.1016/j.tplants.2020.06.008

  • Yu, H., Si, P., Shao, W., Qiao, X., Yang, X., Gao, D., and Wang, Z. 2016. Response of enzyme activities and microbial communities to soil amendment with sugar alcohols. Microbiologyopen 5, 604–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Z., Xu, Y., Zhu, L., Zhang, L., Liu, L., Zhang, D., Li, D., Wu, C., Huang, J., Yang, G., et al. 2020b. The Brassicaceae-specific secreted peptides, STMPs, function in plant growth and pathogen defense. J. Integr. Plant Biol. 62, 403–420.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Z., Zhang, D., Xu, Y., Jin, S., Zhang, L., Zhang, S., Yang, G., Huang, J., Yan, K., Wu, C., et al. 2019. CEPR2 phosphorylates and accelerates the degradation of PYR/PYLs in Arabidopsis. J. Exp. Bot. 70, 5457–5469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Shen, H., He, X., Thomas, B.W., Lupwayi, N.Z., Hao, X., Thomas, M.C., and Shi, X. 2017. Fertilization shapes bacterial community structure by alteration of soil pH. Front. Microbiol. 8, 1325.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant. Biol. 53, 247–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31771732, 31901574, and 31971856), National Key R&D program of China (Grant No. 2018YFE0108600), and Major Scientific and Technological Innovation Projects in Shandong Province (Grant No. 2019JZZY010702).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jishun Yang or Yang Xu.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ci, D., Tang, Z., Ding, H. et al. The synergy effect of arbuscular mycorrhizal fungi symbiosis and exogenous calcium on bacterial community composition and growth performance of peanut (Arachis hypogaea L.) in saline alkali soil. J Microbiol. 59, 51–63 (2021). https://doi.org/10.1007/s12275-021-0317-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0317-3

Keywords

Navigation