Skip to main content
Log in

Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Exploitation of the efficient and cost-effective electrode materials is urgently desirable for the development of advanced energy devices. With the unique features of good electronic conductivity, structure flexibility, and desirable physicochemical property, carbon-based nanomaterials have attracted enormous research attention as efficient electrode materials. Electronic and microstructure engineering of carbon-based nanomaterials are the keys to regulate the electrocatalytic properties for the specific redox reactions of advanced metal-based batteries. However, the critical roles of carbon-based electrocatalysts for rechargeable metal batteries have not been comprehensively discussed. With the basic introduction on the electronic and microstructure engineering strategies, we summarize the recent advances on the rational design of carbon-based electrocatalysts for the important redox reactions in various metal-air batteries and metal-halogen batteries. The relationships between the composition, structure, and the electrocatalytic properties of carbon-based materials were well-addressed to enhance the battery performance. The overview of present challenges and opportunities of the carbon-based active materials for future energy-related applications was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.

    CAS  Google Scholar 

  2. Kammen, D. M.; Sunter, D. A. City-integrated renewable energy for urban sustainability. Science 2016, 352, 922–928.

    CAS  Google Scholar 

  3. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    CAS  Google Scholar 

  4. Cheng, F. Y.; Chen, J. Metal-air batteries: From oxygenreduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 2012, 41, 2172–2192.

    CAS  Google Scholar 

  5. Yang, C. Y.; Chen, J.; Ji, X.; Pollard, T. P.; Lü, X. J.; Sun, C. J.; Hou, S.; Liu, Q.; Liu, C. M.; Qing, T. T. et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 2019, 569, 245–250.

    CAS  Google Scholar 

  6. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.

    CAS  Google Scholar 

  7. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  8. Shinde, S. S.; Jung, J. Y.; Wagh, N. K.; Lee, C. H.; Kim, D. H.; Kim, S. H.; Lee, S. U.; Lee, J. H. Ampere-hour-scale zinc-air pouch cells. Nat. Energy 2021, 6, 592–604.

    CAS  Google Scholar 

  9. Xiong, Q.; Huang, G.; Yu, Y.; Li, C. L.; Li, J. C.; Yan, J. M.; Zhang, X. B. Soluble and perfluorinated polyelectrolyte for safe and high-performance Li-O2 batteries. Angew. Chem., Int. Ed. 2022, 61, e202116635.

    CAS  Google Scholar 

  10. He, X.; Ni, Y. X.; Li, Y. X.; Sun, H. X.; Lu, Y.; Li, H. X.; Yan, Z. H.; Zhang, K.; Chen, J. An MXene-based metal anode with stepped sodiophilic gradient structure enables a large current density for rechargeable Na-O2 batteries. Adv. Mater. 2022, 34, 2106565.

    CAS  Google Scholar 

  11. Qin, L.; Schkeryantz, L.; Zheng, J. F.; Xiao, N.; Wu, Y. Y. Superoxide-based K-O2 batteries: Highly reversible oxygen redox solves challenges in air electrodes. J. Am. Chem. Soc. 2020, 142, 11629–11640.

    CAS  Google Scholar 

  12. Li, P.; Li, X.; Guo, Y.; Li, C.; Hou, Y.; Cui, H.; Zhang, R.; Huang, Z.; Zhao, Y.; Li, Q. et al. Highly thermally/electrochemically stable I/I 3 bonded organic salts with high I content for long-life Li-I2 batteries. Adv. Energy Mater. 2022, 12, 2103648.

    CAS  Google Scholar 

  13. Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

    CAS  Google Scholar 

  14. Zhang, J. T.; Jiang, J. W.; Li, H. L.; Zhao, X. S. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 2011, 4, 4009–4015.

    CAS  Google Scholar 

  15. Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 2680–2721.

    CAS  Google Scholar 

  16. Chen, K.; Shi, L. R.; Zhang, Y. F.; Liu, Z. F. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 2018, 47, 3018–3036.

    CAS  Google Scholar 

  17. Paul, R.; Zhu, L.; Chen, H.; Qu, J.; Dai, L. M. Recent advances in carbon-based metal-free electrocatalysts. Adv. Mater. 2019, 31, 1806403.

    Google Scholar 

  18. Zhang, J. T.; Xia, Z. H.; Dai, L. M. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564.

    Google Scholar 

  19. Guo, J. R.; Xu, X. T.; Hill, J. P.; Wang, L. P.; Dang, J. J.; Kang, Y. Q.; Li, Y. L.; Guan, W. S.; Yamauchi, Y. Graphene-carbon 2D heterostructures with hierarchically-porous P, N-doped layered architecture for capacitive deionization. Chem. Sci. 2021, 12, 10334–10340.

    CAS  Google Scholar 

  20. Zhao, G. K.; Li, X. M.; Huang, M. R.; Zhen, Z.; Zhong, Y. J.; Chen, Q.; Zhao, X. L.; He, Y. J.; Hu, R. R.; Yang, T. T. et al. The physics and chemistry of graphene-on-surfaces. Chem. Soc. Rev. 2017, 46, 4417–4449.

    CAS  Google Scholar 

  21. Ortiz-Medina, J.; Wang, Z. P.; Cruz-Silva, R.; Morelos-Gomez, A.; Wang, F.; Yao, X. D.; Terrones, M.; Endo, M. Defect engineering and surface functionalization of nanocarbons for metal-free catalysis. Adv. Mater. 2019, 31, 1805717.

    Google Scholar 

  22. Yan, X. C.; Jia, Y.; Yao, X. D. Defects on carbons for electrocatalytic oxygen reduction. Chem. Soc. Rev. 2018, 47, 7628–7658.

    CAS  Google Scholar 

  23. Sanati, S.; Abazari, R.; Albero, J.; Morsali, A.; García, H.; Liang, Z.; Zou, R. Metal-organic framework derived bimetallic materials for electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 11048–11067.

    CAS  Google Scholar 

  24. Yang, Z. B.; Ren, J.; Zhang, Z. T.; Chen, X. L.; Guan, G. Z.; Qiu, L. B.; Zhang, Y.; Peng, H. S. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015, 115, 5159–5223.

    CAS  Google Scholar 

  25. El-Kady, M. F.; Shao, Y. L.; Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033.

    CAS  Google Scholar 

  26. Kong, F. T.; Qiao, Y.; Zhang, C. Q.; Fan, X. H.; Kong, A. G.; Shan, Y. K. Unadulterated carbon as robust multifunctional electrocatalyst for overall water splitting and oxygen transformation. Nano Res. 2020, 13, 401–411.

    CAS  Google Scholar 

  27. Zhang, M.; Zhang, J. T.; Ran, S. Y.; Qiu, L. X.; Sun, W.; Yu, Y.; Chen, J. S.; Zhu, Z. H. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 2021, 14, 1175–1186.

    CAS  Google Scholar 

  28. Zhai, Q. F.; Pan, Y.; Dai, L. M. Carbon-based metal-free electrocatalysts: Past, present, and future. Acc. Mater. Res. 2021, 2, 1239–1250.

    CAS  Google Scholar 

  29. Dong, F.; Wu, M. J.; Zhang, G. X.; Liu, X. H.; Rawach, D.; Tavares, A. C.; Sun, S. H. Defect engineering of carbon-based electrocatalysts for rechargeable zinc-air batteries. Chem. Asian J. 2020, 15, 3737–3751.

    CAS  Google Scholar 

  30. Liu, H. M.; Liu, Q. L.; Wang, Y. R.; Wang, Y. F.; Chou, S. L.; Hu, Z. Z.; Zhang, Z. Q. Bifunctional carbon-based cathode catalysts for zinc-air battery: A review. Chin. Chem. Lett. 2022, 33, 683–692.

    CAS  Google Scholar 

  31. Hu, C. G.; Xiao, Y.; Zou, Y. Q.; Dai, L. M. Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem. Energy Rev. 2018, 1, 84–112.

    CAS  Google Scholar 

  32. Qin, Y.; Ou, Z. H.; Xu, C. L.; Zhang, Z. B.; Yi, J. J.; Jiang, Y.; Wu, J. Y.; Guo, C. Z.; Si, Y. J.; Zhao, T. T. Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5 years: Recent strategies for design, synthesis and performance optimization. Nanoscale Res. Lett. 2021, 16, 92.

    CAS  Google Scholar 

  33. Zhang, J. T.; Dai, L. M. Heteroatom-doped graphitic carbon catalysts for efficient electrocatalysis of oxygen reduction reaction. ACS Catal. 2015, 5, 7244–7253.

    CAS  Google Scholar 

  34. Hu, C. G.; Dai, L. M. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672.

    Google Scholar 

  35. Lu, S. S.; Shi, Y. M.; Zhou, W.; Zhang, Z. P.; Wu, F.; Zhang, B. Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 2022, 144, 3250–3258.

    CAS  Google Scholar 

  36. Xu, J. H.; Liang, Q. J.; Li, Z. J.; Osipov, V. Y.; Lin, Y. J.; Ge, B. H.; Xu, Q.; Zhu, J. F.; Bi, H. Rational synthesis of solid-state ultraviolet B emitting carbon dots via acetic acid-promoted fractions of sp3 bonding strategy. Adv. Mater. 2022, 34, 2200011.

    CAS  Google Scholar 

  37. Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

    CAS  Google Scholar 

  38. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    CAS  Google Scholar 

  39. Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855.

    CAS  Google Scholar 

  40. Wang, M. R.; Yang, W. J.; Li, X. Z.; Xu, Y. S.; Zheng, L. R.; Su, C. L.; Liu, B. Atomically dispersed Fe-heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction. ACS Energy Lett. 2021, 6, 379–386.

    CAS  Google Scholar 

  41. Zheng, Y.; Jiao, Y.; Li, L. H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 2014, 8, 5290–5296.

    CAS  Google Scholar 

  42. Woo, J.; Lim, J. S.; Kim, J. H.; Joo, S. H. Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity. Chem. Commun. 2021, 57, 7350–7361.

    CAS  Google Scholar 

  43. Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 52, 11755–11759.

    CAS  Google Scholar 

  44. Casanovas, J.; Ricart, J. M.; Rubio, J.; Illas, F.; Jiménez-Mateos, J. M. Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials. J. Am. Chem. Soc. 1996, 118, 8071–8076.

    CAS  Google Scholar 

  45. Wang, H. X.; Yang, N.; Li, W.; Ding, W.; Chen, K.; Li, J.; Li, L.; Wang, J. C.; Jiang, J. X.; Jia, F. Q. et al. Understanding the roles of nitrogen configurations in hydrogen evolution: Trace atomic cobalt boosts the activity of planar nitrogen-doped graphene. ACS Energy Lett. 2011, 3, 1345–1352.

    Google Scholar 

  46. Lai, L. F.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C. H.; Gong, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942.

    CAS  Google Scholar 

  47. Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

    CAS  Google Scholar 

  48. Wang, S. Y.; Zhang, L. P.; Xia, Z. H.; Roy, A.; Chang, D. W.; Baek, J. B.; Dai, L. M. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2012, 51, 4209–4212.

    CAS  Google Scholar 

  49. Zhang, J. T.; Dai, L. M. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem., Int. Ed. 2016, 55, 13296–13300.

    CAS  Google Scholar 

  50. Xiao, S. L.; Luo, F.; Hu, H.; Yang, Z. H. Boron and nitrogen dual-doped carbon nanospheres for efficient electrochemical reduction of N2 to NH3. Chem. Commun. 2020, 56, 446–449.

    CAS  Google Scholar 

  51. Zhao, S. J.; Wang, J.; Wang, P.; Wang, S.; Li, J. P. One-step synthesis of N, P co-doped porous carbon electrocatalyst for highly efficient nitrogen fixation. Nano Res. 2022, 15, 1779–1785.

    CAS  Google Scholar 

  52. Fu, S. F.; Zhu, C. Z.; Song, J. H.; Engelhard, M. H.; Li, X. L.; Zhang, P. N.; Xia, H. B.; Du, D.; Lin, Y. H. Template-directed synthesis of nitrogen- and sulfur-codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction. Nano Res. 2017, 10, 1888–1895.

    CAS  Google Scholar 

  53. Qu, K. G.; Zheng, Y.; Zhang, X. X.; Davey, K.; Dai, S.; Qiao, S. Z. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 2017, 11, 7293–7300.

    CAS  Google Scholar 

  54. Yang, L. J.; Jiang, S. J.; Zhao, Y.; Zhu, L.; Chen, S.; Wang, X. Z.; Wu, Q.; Ma, J.; Ma, Y. W.; Hu, Z. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 123, 7270–7273.

    Google Scholar 

  55. Kotakoski, J.; Krasheninnikov, A. V.; Kaiser, U.; Meyer, J. C. From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 2011, 106, 105505.

    CAS  Google Scholar 

  56. Jiang, Y. F.; Yang, L. J.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X. Z.; Wu, Q.; Ma, J.; Hu, Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 2015, 5, 6707–6712.

    CAS  Google Scholar 

  57. Wang, Z. C.; Xu, W. J.; Chen, X. K.; Peng, Y. H.; Song, Y. Y.; Lv, C. X.; Liu, H. L.; Sun, J. W.; Yuan, D.; Li, X. Y. et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv. Funct. Mater. 2019, 29, 1902875.

    Google Scholar 

  58. Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

    Google Scholar 

  59. Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

    CAS  Google Scholar 

  60. Qiao, Y.; Liu, Y.; Chen, C.; Xie, H.; Yao, Y.; He, S.; Ping, W.; Liu, B.; Hu, L. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv. Funct. Mater. 2011, 28, 1805899.

    Google Scholar 

  61. Liu, Z. Y.; Hu, Y. B.; Zheng, W. H.; Wang, C.; Baaziz, W.; Richard, F.; Ersen, O.; Bonn, M.; Wang, H. I.; Narita, A. et al. Untying the bundles of solution-synthesized graphene nanoribbons for highly capacitive micro-supercapacitors. Adv. Funct. Mater. 2022, 32, 2109543.

    CAS  Google Scholar 

  62. Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538.

    CAS  Google Scholar 

  63. Dong, Y.; Zhang, Q. J.; Tian, Z. Q.; Li, B. R.; Yan, W. S.; Wang, S.; Jiang, K. M.; Su, J. W.; Oloman, C. W.; Gyenge, E. L. et al. Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv. Mater. 2020, 32, 2001300.

    CAS  Google Scholar 

  64. Jia, Y.; Zhang, L. Z.; Zhuang, L. Z.; Liu, H. L.; Yan, X. C.; Wang, X.; Liu, J. D.; Wang, J. C.; Zheng, Y. R.; Xiao, Z. H. et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nat. Catal. 2019, 2, 688–695.

    CAS  Google Scholar 

  65. Páez, C. J.; Pereira, A. L. C.; Rodrigues, J. N. B.; Peres, N. M. R. Electronic transport across linear defects in graphene. Phys. Rev. B 2015, 92, 045426.

    Google Scholar 

  66. Zhang, L. P.; Xu, Q.; Niu, J. B.; Xia, Z. H. Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Phys. Chem. Chem. Phys. 2015, 17, 16733–16743.

    CAS  Google Scholar 

  67. Li, D. H.; Jia, Y.; Chang, G. J.; Chen, J.; Liu, H. W.; Wang, J. C.; Hu, Y. F.; Xia, Y. Z.; Yang, D. J.; Yao, X. D. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 2018, 4, 2345–2356.

    CAS  Google Scholar 

  68. Shen, A. L.; Zou, Y. Q.; Wang, Q.; Dryfe, R. A. W.; Huang, X. B.; Dou, S.; Dai, L. M.; Wang, S. Y. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem., Int. Ed. 2014, 53, 10804–10808.

    CAS  Google Scholar 

  69. Wang, X.; Jia, Y.; Mao, X.; Liu, D. B.; He, W. X.; Li, J.; Liu, J. G.; Yan, X. C.; Chen, J.; Song, L. et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 2020, 32, 2000966.

    CAS  Google Scholar 

  70. Blackwell, R. E.; Zhao, F. Z.; Brooks, E.; Zhu, J. M.; Piskun, I.; Wang, S. K.; Delgado, A.; Lee, Y. L.; Louie, S. G.; Fischer, F. R. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 2021, 600, 647–652.

    CAS  Google Scholar 

  71. Su, X. L.; Xue, Z. J.; Li, G.; Yu, P. Edge state engineering of graphene nanoribbons. Nano Lett. 2018, 18, 5744–5751.

    CAS  Google Scholar 

  72. Tao, L.; Wang, Q.; Dou, S.; Ma, Z. L.; Huo, J.; Wang, S. Y.; Dai, L. M. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2016, 52, 2764–2767.

    CAS  Google Scholar 

  73. Jeon, I. Y.; Choi, H. J.; Choi, M.; Seo, J. M.; Jung, S. M.; Kim, M. J.; Zhang, S.; Zhang, L. P.; Xia, Z. H.; Dai, L. M. et al. Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 2013, 3, 1810.

    Google Scholar 

  74. Jeon, I. Y.; Bae, S. Y.; Seo, J. M.; Baek, J. B. Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling. Adv. Funct. Mater. 2015, 25, 6961–6975.

    CAS  Google Scholar 

  75. Jeon, I. Y.; Choi, H. J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Dai, L. M.; Baek, J. B. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393.

    CAS  Google Scholar 

  76. Jeon, I. Y.; Choi, M.; Choi, H. J.; Jung, S. M.; Kim, M. J.; Seo, J. M.; Bae, S. Y.; Yoo, S.; Kim, G.; Jeong, H. Y. et al. Antimony-doped graphene nanoplatelets. Nat. Commun. 2015, 6, 7123.

    Google Scholar 

  77. Wang, H. T.; Wang, Q. X.; Cheng, Y. C.; Li, K.; Yao, Y. B.; Zhang, Q.; Dong, C. Z.; Wang, P.; Schwingenschlögl, U.; Yang, W. et al. Doping monolayer graphene with single atom substitutions. Nano Lett. 2012, 12, 141–144.

    Google Scholar 

  78. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    CAS  Google Scholar 

  79. Liu, Y.; Cai, J. Y.; Zhou, J. B.; Zang, Y. P.; Zheng, X. S.; Zhu, Z. X.; Liu, B.; Wang, G. M.; Qian, Y. T. Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li-O2 batteries. eScience 2022, 2, 389–398.

    Google Scholar 

  80. Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120027.

  81. Chen, S.; Chen, S.; Zhang, B. H.; Zhang, J. T. Bifunctional oxygen electrocatalysis of N, S-codoped porous carbon with interspersed hollow CoO nanoparticles for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 16720–16728.

    CAS  Google Scholar 

  82. Chen, S.; Shu, X. X.; Wang, H. S.; Zhang, J. T. Thermally driven phase transition of manganese oxide on carbon cloth for enhancing the performance of flexible all-solid-state zinc-air batteries. J. Mater. Chem. A 2019, 7, 19719–19727.

    CAS  Google Scholar 

  83. Sun, C. C.; Dong, Q. C.; Yang, J.; Dai, Z. Y.; Lin, J. J.; Chen, P.; Huang, W.; Dong, X. C. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res. 2016, 9, 2234–2243.

    CAS  Google Scholar 

  84. Xue, Y. K.; Li, H. Q.; Ye, X. W. Y.; Yang, S. L.; Zheng, Z. P.; Han, X.; Zhang, X. B.; Chen, L. N.; Xie, Z. X.; Kuang, Q. et al. N-doped carbon shell encapsulated PtZn intermetallic nanoparticles as highly efficient catalysts for fuel cells. Nano Res. 2019, 12, 2490–2497.

    CAS  Google Scholar 

  85. Binninger, T.; Schmidt, T. J.; Kramer, D. Capacitive electronic metal—support interactions: Outer surface charging of supported catalyst particles. Phys. Rev. B 2017, 96, 165405.

    Google Scholar 

  86. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

    CAS  Google Scholar 

  87. Ye, M. H.; Zhang, Z. P.; Zhao, Y.; Qu, L. T. Graphene platforms for smart energy generation and storage. Joule 2018, 2, 245–268.

    CAS  Google Scholar 

  88. Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; Xiang, Z. H.; Cao, D. P. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631.

    CAS  Google Scholar 

  89. Mitchell, S.; Qin, R. X.; Zheng, N. F.; Pérez-Ramírez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol. 2021, 16, 129–139.

    CAS  Google Scholar 

  90. Chen, Y. P.; Wei, J. T.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Carbon-based catalysts for Fischer—Tropsch synthesis. Chem. Soc. Rev. 2021, 50, 2337–2366.

    CAS  Google Scholar 

  91. Cheng, X. L.; Pan, J.; Zhao, Y.; Liao, M.; Peng, H. S. Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 2018, 8, 1702184.

    Google Scholar 

  92. Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

    CAS  Google Scholar 

  93. Su, P. P.; Pei, W.; Wang, X. W.; Ma, Y. F.; Jiang, Q. K.; Liang, J.; Zhou, S.; Zhao, J. J.; Liu, J.; Lu, G. Q. M. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew. Chem., Int. Ed. 2021, 60, 16044–16050.

    CAS  Google Scholar 

  94. Zhang, F.; Ma, J.; Tan, Y.; Yu, G.; Qin, H. X.; Zheng, L. R.; Liu, H. B.; Li, R. Construction of porphyrin porous organic cage as a support for single cobalt atoms for photocatalytic oxidation in visible light. ACS Catal. 2022, 12, 5827–5833.

    CAS  Google Scholar 

  95. Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120015.

  96. Guo, H.; Si, D. H.; Zhu, H. J.; Li, Q. X.; Huang, Y. B.; Cao, R. Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities. eScience 2022, 2, 295–303.

    Google Scholar 

  97. Zhang, X. F.; Guo, J. J.; Guan, P. F.; Liu, C. J.; Huang, H.; Xue, F. H.; Dong, X. L.; Pennycook, S. J.; Chisholm, M. F. Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 2013, 4, 1924.

    Google Scholar 

  98. Qiu, H. J.; Ito, Y.; Cong, W. T.; Tan, Y. W.; Liu, P.; Hirata, A.; Fujita, T.; Tang, Z.; Chen, M. W. Nanoporous graphene with single-atom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem., Int. Ed. 2015, 54, 14031–14035.

    CAS  Google Scholar 

  99. Wu, H. H.; Li, H. B.; Zhao, X. F.; Liu, Q. F.; Wang, J.; Xiao, J. P.; Xie, S. H.; Si, R.; Yang, F.; Miao, S. et al. Highly doped and exposed Cu(I)-N active sites within graphene towards efficient oxygen reduction for zinc-air batteries. Energy Environ. Sci. 2016, 9, 3736–3745.

    CAS  Google Scholar 

  100. Cao, X. Y.; Zhao, L. L.; Wulan, B.; Tan, D. X.; Chen, Q. W.; Ma, J. Z.; Zhang, J. T. Atomic bridging structure of nickel-nitrogen-carbon for highly efficient electrocatalytic reduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202113918.

    CAS  Google Scholar 

  101. Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; Xiao, J. P.; Miao, S.; Xie, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

    CAS  Google Scholar 

  102. Li, T. F.; Deng, H. J.; Liu, J. J.; Jin, C.; Song, Y.; Wang, F. First-row transition metals and nitrogen co-doped carbon nanotubes: The exact origin of the enhanced activity for oxygen reduction reaction. Carbon 2019, 143, 859–868.

    CAS  Google Scholar 

  103. Calle-Vallejo, F.; Martínez, J. I.; Rossmeisl, J. Density functional studies of functionalized graphitic materials with late transition metals for oxygenreduction reactions. Phys. Chem. Chem. Phys. 2011, 13, 15639–15643.

    CAS  Google Scholar 

  104. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    CAS  Google Scholar 

  105. Fang, X. Z.; Jiao, L.; Yu, S. H.; Jiang, H. L. Metal-organic framework-derived FeCo-N-doped hollow porous carbon nanocubes for electrocatalysis in acidic and alkaline media. ChemSusChem 2017, 10, 3019–3024.

    CAS  Google Scholar 

  106. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    CAS  Google Scholar 

  107. Paul, R.; Du, F.; Dai, L. M.; Ding, Y.; Wang, Z. L.; Wei, F.; Roy, A. 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 2019, 31, 1805598.

    Google Scholar 

  108. Zhai, Y. P.; Zhang, B. W.; Shi, R.; Zhang, S. Y.; Liu, Y.; Wang, B. Y.; Zhang, K.; Waterhouse, G. I. N.; Zhang, T. R.; Lu, S. Y. Carbon dots as new building blocks for electrochemical energy storage and electrocatalysis. Adv. Energy Mater. 2022, 12, 2103426.

    CAS  Google Scholar 

  109. Hoang, V. C.; Dave, K.; Gomes, V. G. Carbon quantum dot-based composites for energy storage and electrocatalysis: Mechanism, applications and future prospects. Nano Energy 2019, 66, 104093.

    CAS  Google Scholar 

  110. Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    CAS  Google Scholar 

  111. Haque, E.; Kim, J.; Malgras, V.; Reddy, K. R.; Ward, A. C.; You, J.; Bando, Y.; Hossain, M. S. A.; Yamauchi, Y. Recent advances in graphene quantum dots: Synthesis, properties, and applications. Small Methods 2018, 2, 1800050.

    Google Scholar 

  112. Zahir, N.; Magri, P.; Luo, W.; Gaumet, J. J.; Pierrat, P. Recent advances on graphene quantum dots for electrochemical energy storage devices. Energy Environ. Mater. 2022, 5, 201–214.

    CAS  Google Scholar 

  113. Zhang, R. F.; Zhang, Y. Y.; Wei, F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties and applications. Chem. Soc. Rev. 2017, 46, 3661–3715.

    CAS  Google Scholar 

  114. Zhang, W.; Cai, G. R.; Wu, R.; He, Z.; Yao, H. B.; Jiang, H. L.; Yu, S. H. Templating synthesis of metal-organic framework nanofiber aerogels and their derived hollow porous carbon nanofibers for energy storage and conversion. Small 2021, 17, 2004140.

    CAS  Google Scholar 

  115. He, Q.; Qiao, S. C.; Zhou, Y. Z.; Vajtai, R.; Li, D. P.; Ajayan, P. M.; Ci, L.; Song, L. Carbon nanotubes-based electrocatalysts: Structural regulation, support effect, and synchrotron-based characterization. Adv. Funct. Mater. 2022, 32, 2106684.

    CAS  Google Scholar 

  116. Luo, J. R.; Yao, X. H.; Yang, L.; Han, Y.; Chen, L.; Geng, X. M.; Vattipalli, V.; Dong, Q.; Fan, W.; Wang, D. W. et al. Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Res. 2017, 10, 4318–4326.

    CAS  Google Scholar 

  117. Wang, S. G.; Cui, Z. T.; Qin, J. W.; Cao, M. H. Thermally removable in situ formed ZnO template for synthesis of hierarchically porous N-doped carbon nanofibers for enhanced electrocatalysis. Nano Res. 2016, 9, 2270–2283.

    CAS  Google Scholar 

  118. Fang, Y. J.; Luan, D. Y.; Gao, S. Y.; Lou, X. W. Rational design and engineering of one-dimensional hollow nanostructures for efficient electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 20102–20118.

    CAS  Google Scholar 

  119. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    CAS  Google Scholar 

  120. Guo, S. J.; Dong, S. J. Graphenenanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644–2672.

    CAS  Google Scholar 

  121. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Google Scholar 

  122. Chen, D.; Tang, L. H.; Li, J. H. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 39, 3157–3180.

    CAS  Google Scholar 

  123. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    CAS  Google Scholar 

  124. Pang, Y. P.; Su, C.; Jia, G. H.; Xu, L. Q.; Shao, Z. P. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chem. Soc. Rev. 2021, 50, 12744–12787.

    CAS  Google Scholar 

  125. Zou, L. L.; Wei, Y. S.; Hou, C. C.; Wang, M.; Wang, Y.; Wang, H. F.; Liu, Z.; Xu, Q. One-step synthesis of ultrathin carbon nanoribbons from metal-organic framework nanorods for oxygen reduction and zinc-air batteries. CCS Chem. 2022, 4, 194–204.

    CAS  Google Scholar 

  126. Gao, L. F.; Zhang, G. Q.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. N. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Res. 2020, 13, 1604–1613.

    CAS  Google Scholar 

  127. Tang, T. M.; Li, S. S.; Sun, J. R.; Wang, Z. L.; Guan, J. Q. Advances and challenges in two-dimensional materials for oxygen evolution. Nano Res. 2022, 15, 8714–8750.

    CAS  Google Scholar 

  128. Kumar, S.; Saeed, G.; Zhu, L.; Hui, K. N.; Kim, N. H.; Lee, J. H. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem. Eng. J. 2021, 403, 126352.

    CAS  Google Scholar 

  129. Zhu, C. Z.; Li, H.; Fu, S. F.; Du, D.; Lin, Y. H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531.

    CAS  Google Scholar 

  130. Qiu, B. C.; Xing, M. Y.; Zhang, J. L. Recent advances in three-dimensional graphene based materials for catalysis applications. Chem. Soc. Rev. 2018, 47, 2165–2216.

    CAS  Google Scholar 

  131. Mao, J. J.; Iocozzia, J.; Huang, J. Y.; Meng, K.; Lai, Y. K.; Lin, Z. Q. Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 2018, 11, 772–799.

    CAS  Google Scholar 

  132. Dutta, S.; Bhaumik, A.; Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2011, 7, 3574–3592.

    Google Scholar 

  133. Xu, Y. X.; Shi, G. Q.; Duan, X. F. Self-assembled three-dimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc. Chem. Res. 2015, 48, 1666–1675.

    CAS  Google Scholar 

  134. Tan, P.; Chen, B.; Xu, H. R.; Zhang, H. C.; Cai, W. Z.; Ni, M.; Liu, M. L.; Shao, Z. P. Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives. Energy Environ. Sci. 2017, 10, 2056–2080.

    CAS  Google Scholar 

  135. Li, G. Z.; Huang, B.; Pan, Z. F.; Su, X. Y.; Shao, Z. P.; An, L. Advances in three-dimensional graphene-based materials: Configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy Environ. Sci. 2019, 12, 2030–2053.

    CAS  Google Scholar 

  136. Jung, J. Y.; Kim, S.; Kim, J. G.; Kim, M. J.; Lee, K. S.; Sung, Y. E.; Kim, P.; Yoo, S. J.; Lim, H. K.; Kim, N. D. Hierarchical porous single-wall carbon nanohorns with atomic-level designed single-atom Co sites toward oxygen reduction reaction. Nano Energy 2022, 97, 107206.

    CAS  Google Scholar 

  137. Qi, Y. R.; Li, Q. J.; Wu, Y. K.; Bao, S. J.; Li, C. M.; Chen, Y. M.; Wang, G. X.; Xu, M. W. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na-S batteries. Nat. Commun. 2021, 12, 6347.

    CAS  Google Scholar 

  138. Wang, B.; Yuan, F.; Yu, Q. Y.; Li, W.; Sun, H. L.; Zhang, L. P.; Zhang, D.; Wang, Q. J.; Lai, F. L.; Wang, W. Amorphous carbon/graphite coupled polyhedral microframe with fast electronic channel and enhanced ion storage for potassium ion batteries. Energy Storage Mater. 2021, 38, 329–337.

    Google Scholar 

  139. Geng, D. S.; Ding, N.; Hor, T. S. A.; Chien, S. W.; Liu, Z. L.; Wuu, D.; Sun, X. L.; Zong, Y. From lithium-oxygen to lithium-air batteries: Challenges and opportunities. Adv. Energy Mater. 2016, 6, 1502164.

    Google Scholar 

  140. Yang, X. Y.; Xu, J. J.; Chang, Z. W.; Bao, D.; Yin, Y. B.; Liu, T.; Yan, J. M.; Liu, D. P.; Zhang, Y.; Zhang, X. B. Blood-capillary-inspired, free-standing, flexible, and low-cost super-hydrophobic N-CNTs@SS cathodes for high-capacity, high-rate, and stable Li-air batteries. Adv. Energy Mater. 2018, 8, 1702242.

    Google Scholar 

  141. Guo, Z. Y.; Wang, F. M.; Li, Z. J.; Yang, Y.; Tamirat, A. G.; Qi, H. C.; Han, J. S.; Li, W.; Wang, L.; Feng, S. H. Lithiophilic Co/Co4N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for Li-air batteries. J. Mater. Chem. A 2018, 6, 22096–22105.

    CAS  Google Scholar 

  142. Sun, C. W.; Li, F.; Ma, C.; Wang, Y.; Ren, Y. L.; Yang, W.; Ma, Z. H.; Li, J. Q.; Chen, Y. J.; Kim, Y. et al. Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries. J. Mater. Chem. A 2014, 2, 7188–7196.

    CAS  Google Scholar 

  143. Liu, W.; Sun, Q.; Yang, Y.; Xie, J. Y.; Fu, Z. W. An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. Chem. Commun. 2013, 49, 1951–1953.

    CAS  Google Scholar 

  144. Kwak, W. J.; Chen, Z. H.; Yoon, C. S.; Lee, J. K.; Amine, K.; Sun, Y. K. Nanoconfinement of low-conductivity products in rechargeable sodium-air batteries. Nano Energy 2015, 12, 123–130.

    CAS  Google Scholar 

  145. Cheon, J. Y.; Kim, K.; Sa, Y. J.; Sahgong, S. H.; Hong, Y.; Woo, J.; Yim, S. D.; Jeong, H. Y.; Kim, Y.; Joo, S. H. Graphitic nanoshell/mesoporous carbon nanohybrids as highly efficient and stable bifunctional oxygen electrocatalysts for rechargeable aqueous Na-air batteries. Adv. Energy Mater. 2016, 6, 1501794.

    Google Scholar 

  146. Wang, J. R.; Lu, H. M.; Hong, Q. S.; Cao, Y.; Li, X. D.; Bai, J. J. Porous N, S-codoped carbon architectures with bimetallic sulphide nanoparticles encapsulated in graphitic layers: Highly active and robust electrocatalysts for the oxygen reduction reaction in Al-air batteries. Chem. Eng. J. 2017, 330, 1342–1350.

    CAS  Google Scholar 

  147. Jiang, M.; Fu, C. P.; Cheng, R. Q.; Liu, T. Y.; Guo, M. L.; Meng, P. Y.; Zhang, J.; Sun, B. D. Interface engineering of Co3Fe7-Fe3C heterostructure as an efficient oxygen reduction reaction electrocatalyst for aluminum-air batteries. Chem. Eng. J. 2021, 404, 127124.

    CAS  Google Scholar 

  148. Cheng, R. Q.; Jiang, M.; Li, K. Q.; Guo, M. L.; Zhang, J.; Ren, J. M.; Meng, P. Y.; Li, R. H.; Fu, C. P. Dimensional engineering of carbon dots derived sulfur and nitrogen co-doped carbon as efficient oxygen reduction reaction electrocatalysts for aluminum-air batteries. Chem. Eng. J. 2021, 425, 130603.

    CAS  Google Scholar 

  149. Fu, X. G.; Jiang, G. P.; Wen, G. B.; Gao, R.; Li, S.; Li, M.; Zhu, J. B.; Zheng, Y.; Li, Z. Q.; Hu, Y. F. et al. Densely accessible Fe-Nx active sites decorated mesoporous-carbon-spheres for oxygen reduction towards high performance aluminum-air flow batteries. Appl. Catal. B: Environ. 2021, 293, 120176.

    CAS  Google Scholar 

  150. Hang, B. T.; Watanabe, T.; Egashira, M.; Watanabe, I.; Okada, S.; Yamaki, J. I. The effect of additives on the electrochemical properties of Fe/C composite for Fe/air battery anode. J. Power Sources 2006, 155, 461–469.

    CAS  Google Scholar 

  151. Ito, A.; Zhao, L. W.; Okada, S.; Yamaki, J. I. Synthesis of nano-Fe3O4-loaded tubular carbon nanofibers and their application as negative electrodes for Fe/air batteries. J. Power Sources 2011, 196, 8154–8159.

    CAS  Google Scholar 

  152. Tan, W. K.; Asami, K.; Maeda, Y.; Hayashi, K.; Kawamura, G.; Muto, H.; Matsuda, A. Facile formation of Fe3O4-particles decorated carbon paper and its application for all-solid-state rechargeable Fe-air battery. Appl. Surf. Sci. 2019, 486, 257–264.

    CAS  Google Scholar 

  153. Zhang, X. M.; Li, Y.; Jiang, M.; Wei, J. X.; Ding, X. X.; Zhu, C. Y.; He, H.; Lai, H. C.; Shi, J. Y. Engineering the coordination environment in atomic Fe/Ni dual-sites for efficient oxygen electrocatalysis in Zn-air and Mg-air batteries. Chem. Eng. J. 2021, 426, 130758.

    CAS  Google Scholar 

  154. Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

    CAS  Google Scholar 

  155. Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 2018, 5, 1700691.

    Google Scholar 

  156. Zhu, J. W.; Li, W. Q.; Li, S. H.; Zhang, J.; Zhou, H.; Zhang, C. T.; Zhang, J. N.; Mu, S. C. Defective N/S-codoped 3D cheese-like porous carbon nanomaterial toward efficient oxygen reduction and Zn-air battery. Small 2018, 14, 1800563.

    Google Scholar 

  157. Yang, L.; Shi, L.; Wang, D.; Lv, Y. L.; Cao, D. P. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 2018, 50, 691–698.

    CAS  Google Scholar 

  158. Qu, S. X.; Song, Z. S.; Liu, J.; Li, Y. B.; Kou, Y.; Ma, C.; Han, X. P.; Deng, Y. D.; Zhao, N. Q.; Hu, W. B. et al. Electrochemical approach to prepare integrated air electrodes for highly stretchable zinc-air battery array with tunable output voltage and current for wearable electronics. Nano Energy 2017, 39, 101–110.

    CAS  Google Scholar 

  159. Liu, J. N.; Zhao, C. X.; Ren, D.; Wang, J.; Zhang, R.; Wang, S. H.; Zhao, C.; Li, B. Q.; Zhang, Q. Preconstructing asymmetric interface in air cathodes for high-performance rechargeable Zn-air batteries. Adv. Mater. 2022, 34, 2109407.

    CAS  Google Scholar 

  160. Jiang, Y.; Deng, Y. P.; Liang, R. L.; Chen, N.; King, G.; Yu, A. P.; Chen, Z. W. Linker-compensated metal-organic framework with electron delocalized metal sites for bifunctional oxygen electrocatalysis. J. Am. Chem. Soc. 2022, 144, 4783–4791.

    CAS  Google Scholar 

  161. Fetrow, C. J.; Carugati, C.; Zhou, X. D.; Wei, S. Y. Electrochemistry of metal-CO2 batteries: Opportunities and challenges. Energy Storage Mater. 2022, 45, 911–933.

    Google Scholar 

  162. Mu, X. W.; Pan, H.; He, P.; Zhou, H. S. Li-CO2 and Na-CO2 batteries: Toward greener and sustainable electrical energy storage. Adv. Mater. 2020, 32, 1903790.

    CAS  Google Scholar 

  163. Wang, F.; Li, Y.; Xia, X. H.; Cai, W.; Chen, Q. G.; Chen, M. H. Metal-CO2 electrochemistry: From CO2 recycling to energy storage. Adv. Energy Mater. 2021, 11, 2100667.

    CAS  Google Scholar 

  164. Xie, J. F.; Zhou, Z.; Wang, Y. B. Metal-CO2 batteries at the crossroad to practical energy storage and CO2 recycle. Adv. Funct. Mater. 2020, 30, 1908285.

    CAS  Google Scholar 

  165. Ge, B. C.; Wang, Y. Y.; Sun, Y.; Li, Y. P.; Huang, J. Y.; Peng, Q. M. A proof-of-concept of Na-N2 rechargeable battery. Energy Storage Mater. 2019, 23, 733–740.

    Google Scholar 

  166. Li, Y.; Zhang, Q.; Mei, Z. W.; Li, S. N.; Luo, W. B.; Pan, F.; Liu, H. K.; Dou, S. X. Recent advances and perspective on electrochemical ammonia synthesis under ambient conditions. Small Methods 2021, 5, 2100460.

    CAS  Google Scholar 

  167. Wang, H.; Si, J. C.; Zhang, T. Y.; Li, Y.; Yang, B.; Li, Z. J.; Chen, J.; Wen, Z. H.; Yuan, C.; Lei, L. C. et al. Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. Appl. Catal. B: Environ. 2020, 270, 118892.

    CAS  Google Scholar 

  168. Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

    CAS  Google Scholar 

  169. Zhang, Z.; Wu, S. S.; Yang, C.; Zheng, L. Y.; Xu, D. L.; Zha, R. H.; Tang, L.; Cao, K. Z.; Wang, X. G.; Zhou, Z. Li-N2 batteries: A reversible energy storage system? Angew. Chem., Int. Ed. 2019, 58, 17782–17787.

    CAS  Google Scholar 

  170. Yi, J.; Liang, P. C.; Liu, X. Y.; Wu, K.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries. Energy Environ. Sci. 2018, 11, 3075–3095.

    CAS  Google Scholar 

  171. Shu, X. X.; Chen, S.; Chen, S.; Pan, W.; Zhang, J. T. Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-air batteries and overall water splitting. Carbon 2020, 157, 234–243.

    CAS  Google Scholar 

  172. Yang, M. M.; Shu, X. X.; Pan, W.; Zhang, J. T. Toward flexible zinc-air batteries with self-supported air electrodes. Small 2021, 17, 2006773.

    CAS  Google Scholar 

  173. Jiang, H. S.; Luo, R. H.; Li, Y. M.; Chen, W. Recent advances in solid—liquid—gas three-phase interfaces in electrocatalysis for energy conversion and storage. EcoMat 2022, 4, e12199.

    CAS  Google Scholar 

  174. Shu, X. X.; Yang, M. M.; Liu, M. M.; Pan, W.; Zhang, J. T. The regulation of coordination structure between cobalt and nitrogen on graphene for efficient bifunctional electrocatalysis in Zn-air batteries. J. Energy Chem. 2022, 68, 213–221.

    CAS  Google Scholar 

  175. Chen, S.; Zhao, L. L.; Ma, J. Z.; Wang, Y. Q.; Dai, L. M.; Zhang, J. T. Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy 2019, 60, 536–544.

    CAS  Google Scholar 

  176. Jeon, I. Y.; Zhang, S.; Zhang, L. P.; Choi, H. J.; Seo, J. M.; Xia, Z. H.; Dai, L. M.; Baek, J. B. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: The electron spin effect. Adv. Mater. 2013, 25, 6138–6145.

    CAS  Google Scholar 

  177. Zhao, Y.; Liang, J. J.; Wang, C. Y.; Ma, J. M.; Wallace, G. G. Tunable and efficient tin modified nitrogen-doped carbon nanofibers for electrochemical reduction of aqueous carbon dioxide. Adv. Energy Mater. 2018, 8, 1702524.

    Google Scholar 

  178. Wu, M. G.; Wang, Y. Q.; Wei, Z. X.; Wang, L.; Zhuo, M.; Zhang, J. T.; Han, X. P.; Ma, J. M. Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air batteries. J. Mater. Chem. A 2018, 6, 10918–10925.

    CAS  Google Scholar 

  179. Zhang, J. T.; Zhao, Z. H.; Xia, Z. H.; Dai, L. M. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 2015, 10, 444–452.

    CAS  Google Scholar 

  180. Hu, Q.; Li, G. M.; Li, G. D.; Liu, X. F.; Zhu, B.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. Trifunctional electrocatalysis on dual-doped graphene nanorings-integrated boxes for efficient water splitting and Zn-air batteries. Adv. Energy Mater. 2019, 9, 1803867.

    Google Scholar 

  181. Shu, X. X.; Yang, M. M.; Tan, D. X.; Hui, K. S.; Hui, K. N.; Zhang, J. T. Recent advances in the field of carbon-based cathode electrocatalysts for Zn-air batteries. Mater. Adv. 2021, 2, 96–114.

    CAS  Google Scholar 

  182. Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120026.

  183. Wang, W. X.; Xiong, F. Y.; Zhu, S. H.; Chen, J. H.; Xie, J.; An, Q. Y. Defect engineering in molybdenum-based electrode materials for energy storage. eScience 2022, 2, 278–294.

    Google Scholar 

  184. Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845–6851.

    CAS  Google Scholar 

  185. Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Cano, Z. P.; Liu, Y. S.; Bai, Z. Y.; Hwang, S.; Yang, L. et al. Interpenetrating triphase cobalt-based nanocomposites as efficient bifunctional oxygen electrocatalysts for long-lasting rechargeable Zn-air batteries. Adv. Energy Mater. 2018, 8, 1702900.

    Google Scholar 

  186. Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 2013, 52, 2474–2477.

    CAS  Google Scholar 

  187. Duan, J. J.; Zheng, Y.; Chen, S.; Tang, Y. H.; Jaroniec, M.; Qiao, S. Z. Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chem. Commun. 2013, 49, 7705–7707.

    CAS  Google Scholar 

  188. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

    CAS  Google Scholar 

  189. Hou, C. C.; Wang, H. F.; Li, C. X.; Xu, Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693.

    CAS  Google Scholar 

  190. Wang, Z.; Jin, X. Y.; Zhu, C.; Liu, Y. P.; Tan, H.; Ku, R. Q.; Zhang, Y. Q.; Zhou, L. J.; Liu, Z.; Hwang, S. J. et al. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv. Mater. 2021, 33, 2104718.

    CAS  Google Scholar 

  191. Lin, Z. Y.; Huang, H.; Cheng, L.; Hu, W.; Xu, P. P.; Yang, Y.; Li, J. M.; Gao, F. Y.; Yang, K.; Liu, S. et al. Tuning the p-orbital electron structure of s-block metal Ca enables a high-performance electrocatalyst for oxygen reduction. Adv. Mater. 2021, 33, 2107103.

    CAS  Google Scholar 

  192. Liu, S.; Li, Z. D.; Wang, C. L.; Tao, W. W.; Huang, M. X.; Zuo, M.; Yang, Y.; Yang, K.; Zhang, L. J.; Chen, S. et al. Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nat. Commun. 2020, 11, 938.

    CAS  Google Scholar 

  193. Rao, P.; Wu, D. X.; Wang, T. J.; Li, J.; Deng, P. L.; Chen, Q.; Shen, Y. J.; Chen, Y.; Tian, X. L. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2022, 2, 399–404.

    Google Scholar 

  194. Gao, Y.; Kong, D. B.; Cao, F. L.; Teng, S.; Liang, T.; Luo, B.; Wang, B.; Yang, Q. H.; Zhi, L. J. Synergistically tuning the graphitic degree, porosity, and the configuration of active sites for highly active bifunctional catalysts and Zn-air batteries. Nano Res. 2022, 15, 7959–7967.

    CAS  Google Scholar 

  195. Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. A.; Han, A. J. et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew. Chem., Int. Ed. 2018, 57, 8614–8618.

    CAS  Google Scholar 

  196. Song, P.; Luo, M.; Liu, X. Z.; Xing, W.; Xu, W. L.; Jiang, Z.; Gu, L. Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1700802.

    Google Scholar 

  197. Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y. An intrinsically self-healing NiCo∥Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem., Int. Ed. 2018, 57, 9810–9813.

    CAS  Google Scholar 

  198. Wang, Z. F.; Li, H. F.; Tang, Z. J.; Liu, Z. X.; Ruan, Z. H.; Ma, L. T.; Yang, Q.; Wang, D. H.; Zhi, C. Y. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 2018, 28, 1804560.

    Google Scholar 

  199. Niu, Y. L.; Gong, S. Q.; Liu, X.; Xu, C.; Xu, M. Z.; Sun, S. G.; Chen, Z. F. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-air batteries. eScience 2022, 2, 546–556.

    Google Scholar 

  200. Ma, L. T.; Chen, S. M.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Zhi, C. Y. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 2018, 12, 8597–8605.

    CAS  Google Scholar 

  201. Zhao, J. J.; Hu, H. B.; Fang, W. G.; Bai, Z. M.; Zhang, W.; Wu, M. Z. Liquid-metal-bridge-island design: Seamless integration of intrinsically stretchable liquid metal circuits and mechanically deformable structures for ultra-stretchable all-solid-state rechargeable Zn-air battery arrays. J. Mater. Chem. A 2021, 9, 5097–5110.

    CAS  Google Scholar 

  202. Ma, L. T.; Chen, S. M.; Pei, Z. X.; Huang, Y.; Liang, G. J.; Mo, F. N.; Yang, Q.; Su, J.; Gao, Y. H.; Zapien, J. A. et al. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 2018, 12, 1949–1958.

    CAS  Google Scholar 

  203. Li, Y. B.; Zhong, C.; Liu, J.; Zeng, X. Q.; Qu, S. X.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Lu, J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc-air batteries. Adv. Mater. 2018, 30, 1703657.

    Google Scholar 

  204. Fu, J.; Hassan, F. M.; Li, J. D.; Lee, D. U.; Ghannoum, A. R.; Lui, G.; Hoque, M. A.; Chen, Z. W. Flexible rechargeable zinc-air batteries through morphological emulation of human hair array. Adv. Mater. 2016, 28, 6421–6428.

    CAS  Google Scholar 

  205. Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 2019, 31, 1808267.

    Google Scholar 

  206. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    CAS  Google Scholar 

  207. Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 2016, 1, 16128.

    CAS  Google Scholar 

  208. Lim, H. D.; Lee, B.; Bae, Y.; Park, H.; Ko, Y.; Kim, H.; Kim, J.; Kang, K. Reaction chemistry in rechargeable Li-O2 batteries. Chem. Soc. Rev. 2017, 46, 2873–2888.

    CAS  Google Scholar 

  209. Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv. Mater. 2018, 30, 1704162.

    Google Scholar 

  210. Lim, H. D.; Park, K. Y.; Song, H.; Jang, E. Y.; Gwon, H.; Kim, J.; Kim, Y. H.; Lima, M. D.; Ovalle Robles, R.; Lepró, X. et al. Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode. Adv. Mater. 2013, 25, 1348–1352.

    CAS  Google Scholar 

  211. Chen, Y.; Li, F. J.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada, A.; Zhou, H. S. Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li-O2 batteries. J. Mater. Chem. A 2013, 1, 13076–13081.

    CAS  Google Scholar 

  212. Liu, S. H.; Wang, Z. Y.; Yu, C.; Zhao, Z. B.; Fan, X. M.; Ling, Z.; Qiu, J. S. Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li-O2 batteries. J. Mater. Chem. A 2013, 1, 12033–12037.

    CAS  Google Scholar 

  213. Zhang, W. Y.; Zhu, J. X.; Ang, H. X.; Zeng, Y.; Xiao, N.; Gao, Y. B.; Liu, W. L.; Hng, H. H.; Yan, Q. Y. Binder-free graphene foams for O2 electrodes of Li-O2 batteries. Nanoscale 2013, 5, 9651–9658.

    CAS  Google Scholar 

  214. Kim, D. Y.; Kim, M.; Kim, D. W.; Suk, J.; Park, O. O.; Kang, Y. K. Flexible binder-free graphene paper cathodes for high-performance Li-O2 batteries. Carbon 2015, 93, 625–635.

    CAS  Google Scholar 

  215. Guo, Z. Y.; Zhou, D. D.; Dong, X. L.; Qiu, Z. J.; Wang, Y. G.; Xia, Y. Y. Ordered hierarchical mesoporous/macroporous carbon: A high-performance catalyst for rechargeable Li-O2 batteries. Adv. Mater. 2013, 25, 5668–5672.

    CAS  Google Scholar 

  216. Xie, J.; Yao, X. H.; Cheng, Q. M.; Madden, I. P.; Dornath, P.; Chang, C. C.; Fan, W.; Wang, D. W. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O2 battery cathode. Angew. Chem., Int. Ed. 2015, 54, 4299–4303.

    CAS  Google Scholar 

  217. Yu, C.; Zhao, C. T.; Liu, S. H.; Fan, X. M.; Yang, J.; Zhang, M. D.; Qiu, J. S. Polystyrene sphere-mediated ultrathin graphene sheet-assembled frameworks for high-power density Li-O2 batteries. Chem. Commun. 2015, 51, 13233–13236.

    CAS  Google Scholar 

  218. Xiao, J.; Mei, D. H.; Li, X. L.; Xu, W.; Wang, D. Y.; Graff, G. L.; Bennett, W. D.; Nie, Z. M.; Saraf, L. V.; Aksay, I. A. et al. Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett. 2011, 11, 5071–5078.

    CAS  Google Scholar 

  219. Etacheri, V.; Sharon, D.; Garsuch, A.; Afri, M.; Frimer, A. A.; Aurbach, D. Hierarchical activated carbon microfiber (ACM) electrodes for rechargeable Li-O2 batteries. J. Mater. Chem. A 2013, 1, 5021–5030.

    CAS  Google Scholar 

  220. Mitchell, R. R.; Gallant, B. M.; Thompson, C. V.; Shao-Horn, Y. All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ. Sci. 2011, 4, 2952–2958.

    CAS  Google Scholar 

  221. Meng, W.; Liu, S. W.; Wen, L. N.; Qin, X. Carbon microspheres air electrode for rechargeable Li-O2 batteries. RSC Adv. 2015, 5, 52206–52209.

    CAS  Google Scholar 

  222. Lin, X. J.; Zhou, L.; Huang, T.; Yu, A. S. Hierarchically porous honeycomb-like carbon as a lithium-oxygen electrode. J. Mater. Chem. A 2013, 1, 1239–1245.

    CAS  Google Scholar 

  223. Shui, J. L.; Du, F.; Xue, C. M.; Li, Q.; Dai, L. M. Vertically aligned N-doped coral-like carbon fiber arrays as efficient air electrodes for high-performance nonaqueous Li-O2 batteries. ACS Nano 2014, 8, 3015–3022.

    CAS  Google Scholar 

  224. Shui, J. L.; Lin, Y.; Connell, J. W.; Xu, J. T.; Fan, X. L.; Dai, L. M. Nitrogen-doped holey graphene for high-performance rechargeable Li-O2 batteries. ACS Energy Lett. 2016, 1, 260–265.

    CAS  Google Scholar 

  225. Kim, J. H.; Kannan, A. G.; Woo, H. S.; Jin, D. G.; Kim, W.; Ryu, K.; Kim, D. W. A bi-functional metal-free catalyst composed of dual-doped graphene and mesoporous carbon for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 2015, 3, 18456–18465.

    CAS  Google Scholar 

  226. Xiao, J.; Wang, D. H.; Xu, W.; Wang, D. Y.; Williford, R. E.; Liu, J.; Zhang, J. G. Optimization of air electrode for Li/air batteries. J. Electrochem. Soc. 2010, 157, A487–A492.

    CAS  Google Scholar 

  227. Mirzaeian, M.; Hall, P. J. Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim. Acta 2009, 54, 7444–7451.

    CAS  Google Scholar 

  228. Han, J. H.; Guo, X. W.; Ito, Y.; Liu, P.; Hojo, D.; Aida, T.; Hirata, A.; Fujita, T.; Adschiri, T.; Zhou, H. S. et al. Effect of chemical doping on cathodic performance of bicontinuous nanoporous graphene for Li-O2 batteries. Adv. Energy Mater. 2016, 6, 1501870.

    Google Scholar 

  229. Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

    Google Scholar 

  230. Lu, J.; Lee, Y. J.; Luo, X. Y.; Lau, K. C.; Asadi, M.; Wang, H. H.; Brombosz, S.; Wen, J. G.; Zhai, D. Y.; Chen, Z. H. et al. A lithium-oxygen battery based on lithium superoxide. Nature 2016, 529, 377–382.

    CAS  Google Scholar 

  231. Ren, X. D.; Wang, B. Z.; Zhu, J. Z.; Liu, J. J.; Zhang, W. Q.; Wen, Z. Y. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: A first-principles study. Phys. Chem. Chem. Phys. 2015, 17, 14605–14612.

    CAS  Google Scholar 

  232. Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

    Google Scholar 

  233. Gao, R.; Liang, X.; Yin, P. G.; Wang, J. K.; Lee, Y. L.; Hu, Z. B.; Liu, X. F. An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability. Nano Energy 2017, 41, 535–542.

    CAS  Google Scholar 

  234. Ma, S. C.; Wu, Y.; Wang, J. W.; Zhang, Y. L.; Zhang, Y. T.; Yan, X. X.; Wei, Y.; Liu, P.; Wang, J. P.; Jiang, K. L. et al. Reversibility of noble metal-catalyzed aprotic Li-O2 batteries. Nano Lett. 2015, 15, 8084–8090.

    CAS  Google Scholar 

  235. Hu, X. L.; Luo, G.; Zhao, Q. N.; Wu, D.; Yang, T. X.; Wen, J.; Wang, R. H.; Xu, C. H.; Hu, N. Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li-O2 batteries. J. Am. Chem. Soc. 2020, 142, 16776–16786.

    CAS  Google Scholar 

  236. Li, F. J.; Chen, Y.; Tang, D. M.; Jian, Z. L.; Liu, C.; Golberg, D.; Yamada, A.; Zhou, H. S. Performance-improved Li-O2 battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode. Energy Environ. Sci. 2014, 7, 1648–1652.

    CAS  Google Scholar 

  237. Nazarian-Samani, M.; Lim, H. D.; Haghighat-Shishavan, S.; Kim, H. K.; Ko, Y.; Kim, M. S.; Lee, S. W.; Kashani-Bozorg, S. F.; Abbasi, M.; Guim, H. U. et al. A robust design of Ru quantum dot/N-doped holey graphene for efficient Li-O2 batteries. J. Mater. Chem. A 2017, 5, 619–631.

    CAS  Google Scholar 

  238. Lim, H. D.; Song, H.; Gwon, H.; Park, K. Y.; Kim, J.; Bae, Y.; Kim, H.; Jung, S. K.; Kim, T.; Kim, Y. H. et al. A new catalyst-embedded hierarchical air electrode for high-performance Li-O2 batteries. Energy Environ. Sci. 2013, 6, 3570–3575.

    CAS  Google Scholar 

  239. Schroeder, M. A.; Kumar, N.; Pearse, A. J.; Liu, C. Y.; Lee, S. B.; Rubloff, G. W.; Leung, K.; Noked, M. DMSO—Li2O2 interface in the rechargeable Li-O2 battery cathode:Theoretical and experimental perspectives on stability. ACS Appl. Mater. Interfaces 2015, 7, 11402–11411.

    CAS  Google Scholar 

  240. Zhou, W.; Cheng, Y.; Yang, X. F.; Wu, B. S.; Nie, H. J.; Zhang, H. Z.; Zhang, H. M. Iridium incorporated into deoxygenated hierarchical graphene as a high-performance cathode for rechargeable Li-O2 batteries. J. Mater. Chem. A 2015, 3, 14556–14561.

    CAS  Google Scholar 

  241. Shen, J. R.; Wu, H. T.; Sun, W.; Qiao, J. S.; Cai, H. Q.; Wang, Z. H.; Sun, K. N. In-situ nitrogen-doped hierarchical porous hollow carbon spheres anchored with iridium nanoparticles as efficient cathode catalysts for reversible lithium-oxygen batteries. Chem. Eng. J. 2019, 358, 340–350.

    CAS  Google Scholar 

  242. Balasubramanian, P.; Marinaro, M.; Theil, S.; Wohlfahrt-Mehrens, M.; Jörissen, L. Au-coated carbon electrodes for aprotic Li-O2 batteries with extended cycle life: The key issue of the Li-ion source. J. Power Sources 2015, 278, 156–162.

    CAS  Google Scholar 

  243. Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X. Y.; Wen, J. G.; Miller, D.; Assary, R. S.; Wang, H. H.; Redfern, P. et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries. Nat. Commun. 2014, 5, 4895.

    CAS  Google Scholar 

  244. Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.

    CAS  Google Scholar 

  245. Luo, X. Y.; Ge, L.; Ma, L.; Kropf, A. J.; Wen, J. G.; Zuo, X. B.; Ren, Y.; Wu, T. P.; Lu, J.; Amine, K. Effect of componential proportion in bimetallic electrocatalysts on the aprotic lithium-oxygen battery performance. Adv. Energy Mater. 2018, 8, 1703230.

    Google Scholar 

  246. Jian, Z. L.; Liu, P.; Li, F. J.; He, P.; Guo, X. W.; Chen, M. W.; Zhou, H. S. Core—shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem., Int. Ed. 2011, 53, 442–446.

    Google Scholar 

  247. Hong, M. S.; Choi, H. C.; Byon, H. R. Nanoporous NiO plates with a unique role for promoted oxidation of carbonate and carboxylate species in the Li-O2 battery. Chem. Mater. 2015, 27, 2234–2241.

    CAS  Google Scholar 

  248. Yoon, K. R.; Shin, K.; Park, J.; Cho, S. H.; Kim, C.; Jung, J. W.; Cheong, J. Y.; Byon, H. R.; Lee, H. M.; Kim, I. D. Brush-like cobalt nitride anchored carbon nanofiber membrane: Current collector-catalyst integrated cathode for long cycle Li-O2 batteries. ACS Nano 2018, 12, 128–139.

    CAS  Google Scholar 

  249. Hou, C.; Han, J. H.; Liu, P.; Huang, G.; Chen, M. W. Synergetic effect of liquid and solid catalysts on the energy efficiency of Li-O2 batteries: Cell performances and operando STEM observations. Nano Lett. 2020, 20, 2183–2190.

    CAS  Google Scholar 

  250. Yilmaz, E.; Yogi, C.; Yamanaka, K.; Ohta, T.; Byon, H. R. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Nano Lett. 2013, 13, 4679–4684.

    CAS  Google Scholar 

  251. Dai, L. N.; Sun, Q.; Chen, L. N.; Guo, H. H.; Nie, X. K.; Cheng, J.; Guo, J. G.; Li, J. W.; Lou, J.; Ci, L. Ag doped urchin-like α-MnO2 toward efficient and bifunctional electrocatalysts for Li-O2 batteries. Nano Res. 2020, 13, 2356–2364.

    CAS  Google Scholar 

  252. Qin, Y.; Lu, J.; Du, P.; Chen, Z. H.; Ren, Y.; Wu, T. P.; Miller, J. T.; Wen, J. G.; Miller, D. J.; Zhang, Z. C. et al. In situ fabrication of porous-carbon-supported α-MnO2 nanorods at room temperature: Application for rechargeable Li-O2 batteries. Energy Environ. Sci. 2013, 6, 519–531.

    CAS  Google Scholar 

  253. Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Zhang, X. B. Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li-O2 battery. J. Mater. Chem. A 2011, 2, 6081–6085.

    Google Scholar 

  254. Zhou, Y.; Lyu, Z.; Wang, L. J.; Dong, W. H.; Dai, W. R.; Cui, X. H.; Hao, Z. K.; Lai, M.; Chen, W. Co3O4 functionalized porous carbon nanotube oxygen-cathodes to promote Li2O2 surface growth for improved cycling stability of Li-O2 batteries. J. Mater. Chem. A 2017, 5, 25501–25508.

    CAS  Google Scholar 

  255. Zhang, Y. M.; Feng, L. X.; Zhan, W. T.; Li, S. J.; Li, Y. L.; Ren, X. Z.; Zhang, P. X.; Sun, L. N. Co3O4 hollow porous nanospheres with oxygen vacancies for enhanced Li-O2 batteries. ACS Appl. Energy Mater. 2020, 3, 4014–4022.

    CAS  Google Scholar 

  256. Liu, G. X.; Zhang, L.; Wang, S. Q.; Ding, L. X.; Wang, H. H. Hierarchical NiCo2O4 nanosheets on carbon nanofiber films for high energy density and long-life Li-O2 batteries. J. Mater. Chem. A 2017, 5, 14530–14536.

    CAS  Google Scholar 

  257. Cao, L. J.; Lv, F. C.; Liu, Y.; Wang, W. X.; Huo, Y. F.; Fu, X. Z.; Sun, R.; Lu, Z. G. A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li-air batteries. Chem. Commun. 2015, 51, 4364–4367.

    CAS  Google Scholar 

  258. Gong, Y. D.; Ding, W.; Li, Z. P.; Su, R.; Zhang, X. L.; Wang, J.; Zhou, J. G.; Wang, Z. W.; Gao, Y. H.; Li, S. Q. et al. An inverse spinel cobalt-iron oxide and N-doped graphene composite as an efficient and durable bifuctional catalyst for Li-O2 batteries. ACS Catal. 2018, 8, 4082–4090.

    CAS  Google Scholar 

  259. Lu, M. H.; Xu, C. H.; Zhan, Y.; Jim Yang Lee, J. Y. Improving the performance of perovskite in nonaqueous oxygen electrocatalysis. Chem. Asian J. 2016, 11, 1210–1217.

    CAS  Google Scholar 

  260. Cao, Y.; Wei, Z. K.; He, J.; Zang, J.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance. Energy Environ. Sci. 2012, 5, 9765–9768.

    CAS  Google Scholar 

  261. Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li-O2 batteries. Nano Lett. 2013, 13, 4190–4197.

    CAS  Google Scholar 

  262. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Zheng, G. Y.; Li, Y. G.; Cui, Y.; Dai, H. J. Rechargeable Li-O2 batteries with a covalently coupled MnCo2O4-graphene hybrid as an oxygen cathode catalyst. Energy Environ. Sci. 2012, 5, 7931–7935.

    CAS  Google Scholar 

  263. Kwak, W. J.; Lau, K. C.; Shin, C. D.; Amine, K.; Curtiss, L. A.; Sun, Y. K. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano 2015, 9, 4129–4137.

    CAS  Google Scholar 

  264. Zhu, Q. C.; Xu, S. M.; Harris, M. M.; Ma, C.; Liu, Y. S.; Wei, X.; Xu, H. S.; Zhou, Y. X.; Cao, Y. C.; Wang, K. X. et al. A composite of carbon-wrapped Mo2C nanoparticle and carbon nanotube formed directly on Ni foam as a high-performance binder-free cathode for Li-O2 batteries. Adv. Funct. Mater. 2016, 26, 8514–8520.

    CAS  Google Scholar 

  265. Li, J. X.; Zou, M. Z.; Chen, L. Z.; Huang, Z. G.; Guan, L. H. An efficient bifunctional catalyst of Fe/Fe3C carbon nanofibers for rechargeable Li-O2 batteries. J. Mater. Chem. A 2011, 2, 10634–10638.

    Google Scholar 

  266. Li, F. J.; Ohnishi, R.; Yamada, Y.; Kubota, J.; Domen, K.; Yamada, A.; Zhou, H. S. Carbon supported TiN nanoparticles: An efficient bifunctional catalyst for non-aqueous Li-O2 batteries. Chem. Commun. 2013, 49, 1175–1177.

    CAS  Google Scholar 

  267. Dong, S. M.; Chen, X.; Zhang, K. J.; Gu, L.; Zhang, L. X.; Zhou, X. H.; Li, L. F.; Liu, Z. H.; Han, P. X.; Xu, H. X. et al. Molybdenum nitride based hybrid cathode for rechargeable lithium-O2 batteries. Chem. Commun. 2011, 47, 11291–11293.

    CAS  Google Scholar 

  268. Wang, P.; Zhao, D. Y.; Hui, X. B.; Qian, Z.; Zhang, P.; Ren, Y. Y.; Lin, Y.; Zhang, Z. W.; Yin, L. W. Bifunctional catalytic activity guided by rich crystal defects in Ti3C2 MXene quantum dot clusters for Li-O2 batteries. Adv. Energy Mater. 2021, 11, 2003069.

    CAS  Google Scholar 

  269. Park, J.; Jun, Y. S.; Lee, W. R.; Gerbec, J. A.; See, K. A.; Stucky, G. D. Bimodal mesoporous titanium nitride/carbon microfibers as efficient and stable electrocatalysts for Li-O2 batteries. Chem. Mater. 2013, 25, 3779–3781.

    CAS  Google Scholar 

  270. Cao, X. Y.; Wulan, B.; Zhang, B. H.; Tan, D. X.; Zhang, J. T. Defect evolution of hierarchical SnO2 aggregates for boosting CO2 electrocatalytic reduction. J. Mater. Chem. A 2021, 9, 14741–14751.

    CAS  Google Scholar 

  271. Tan, D. X.; Wulan, B.; Cao, X. Y.; Zhang, J. T. Strong interactions of metal—support for efficient reduction of carbon dioxide into ethylene. Nano Energy 2021, 89, 106460.

    CAS  Google Scholar 

  272. Tan, D. X.; Wulan, B.; Ma, J. Z.; Cao, X. Y.; Zhang, J. T. Interface molecular functionalization of Cu2O for synchronous electrocatalytic generation of formate. Nano Lett. 2022, 22, 6298–6305.

    CAS  Google Scholar 

  273. Wulan, B.; Cao, X. Y.; Tan, D. X.; Shu, X. X.; Zhang, J. T. Atomic bridging of metal—nitrogen—carbon toward efficient integrated electrocatalysis. Adv. Funct. Mater. 2022, 32, 2203842.

    CAS  Google Scholar 

  274. Wulan, B.; Zhao, L. L.; Tan, D. X.; Cao, X. Y.; Ma, J. Z.; Zhang, J. T. Electrochemically driven interfacial transformation for high-performing solar-to-fuel electrocatalytic conversion. Adv. Energy Mater. 2022, 12, 2103960.

    CAS  Google Scholar 

  275. Zhang, B. H.; Chen, S.; Wulan, B.; Zhang, J. T. Surface modification of SnO2 nanosheets via ultrathin N-doped carbon layers for improving CO2 electrocatalytic reduction. Chem. Eng. J. 2021, 421, 130003.

    CAS  Google Scholar 

  276. Hu, Z.; Xie, Y. Y.; Yu, D. S.; Liu, Q. N.; Zhou, L. M.; Zhang, K.; Li, P.; Hu, F.; Li, L. L.; Chou, S. L. et al. Hierarchical Ti3C2Tx MXene/carbon nanotubes for low overpotential and long-life Li-CO2 batteries. ACS Nano 2021, 15, 8407–8417.

    CAS  Google Scholar 

  277. Xu, S. M.; Das, S. K.; Archer, L. A. The Li-CO2 battery: A novel method for CO2 capture and utilization. RSC Adv. 2013, 3, 6656–6660.

    CAS  Google Scholar 

  278. Xiao, Y.; Du, F.; Hu, C. G.; Ding, Y.; Wang, Z. L.; Roy, A.; Dai, L. M. High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts. ACS Energy Lett. 2020, 5, 916–921.

    CAS  Google Scholar 

  279. Zhang, Z.; Zhang, Q.; Chen, Y. N.; Bao, J.; Zhou, X. L.; Xie, Z. J.; Wei, J. P.; Zhou, Z. The first introduction of graphene to rechargeable Li-CO2 batteries. Angew. Chem., Int. Ed. 2015, 54, 6550–6553.

    CAS  Google Scholar 

  280. Ye, F. H.; Gong, L. L.; Long, Y. D.; Talapaneni, S. N.; Zhang, L. P.; Xiao, Y.; Liu, D.; Hu, C. G.; Dai, L. M. Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li-CO2 batteries. Adv. Energy Mater. 2021, 11, 2101390.

    CAS  Google Scholar 

  281. Xing, Y.; Yang, Y.; Li, D. H.; Luo, M. C.; Chen, N.; Ye, Y. S.; Qian, J.; Li, L.; Yang, D. J.; Wu, F. et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries. Adv. Mater. 2018, 30, 1803124.

    Google Scholar 

  282. Zhang, Z.; Wang, X. G.; Zhang, X.; Xie, Z. J.; Chen, Y. N.; Ma, L. P.; Peng, Z. Q.; Zhou, Z. Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene. Adv. Sci. 2018, 5, 1700567.

    Google Scholar 

  283. Zhang, Z.; Zhang, Z. W.; Liu, P. F.; Xie, Y. P.; Cao, K. Z.; Zhou, Z. Identification of cathode stability in Li-CO2 batteries with Cu nanoparticles highly dispersed on N-doped graphene. J. Mater. Chem. A 2018, 6, 3218–3223.

    CAS  Google Scholar 

  284. Zhang, Z.; Yang, C.; Wu, S. S.; Wang, A. N.; Zhao, L. L.; Zhai, D. D.; Ren, B.; Cao, K. Z.; Zhou, Z. Exploiting synergistic effect by integrating ruthenium-copper nanoparticles highly Co-dispersed on graphene as efficient air cathodes for Li-CO2 batteries. Adv. Energy Mater. 2019, 9, 1802805.

    Google Scholar 

  285. Liu, L. M.; Qin, Y. Y.; Wang, K.; Mao, H.; Wu, H.; Yu, W.; Zhang, D. Y.; Zhao, H. Y.; Wang, H. R.; Wang, J. H. et al. Rational design of nanostructured metal/C interface in 3D self-supporting cellulose carbon aerogel facilitating high-performance Li-CO2 batteries. Adv. Energy Mater. 2022, 12, 2103681.

    CAS  Google Scholar 

  286. Lin, J. F.; Ding, J. N.; Wang, H. Z.; Yang, X. Y.; Zheng, X. R.; Huang, Z. C.; Song, W. Q.; Ding, J.; Han, X. P.; Hu, W. B. Boosting energy efficiency and stability of Li-CO2 batteries via synergy between Ru atom clusters and single-atom Ru-N4 sites in the electrocatalyst cathode. Adv. Mater. 2022, 34, 2200559.

    CAS  Google Scholar 

  287. Xu, S. M.; Chen, C. J.; Kuang, Y. D.; Song, J. W.; Gan, W. T.; Liu, B. Y.; Hitz, E. M.; Connell, J. W.; Lin, Y.; Hu, L. B. Flexible lithium-CO2 battery with ultrahigh capacity and stable cycling. Energy Environ. Sci. 2018, 11, 3231–3237.

    CAS  Google Scholar 

  288. Wang, C. Y.; Zhang, Q. M.; Zhang, X.; Wang, X. G.; Xie, Z. J.; Zhou, Z. Fabricating Ir/C nanofiber networks as free-standing air cathodes for rechargeable Li-CO2 batteries. Small 2018, 14, 1800641.

    Google Scholar 

  289. Zhang, X.; Wang, C. Y.; Li, H. H.; Wang, X. G.; Chen, Y. N.; Xie, Z. J.; Zhou, Z. High performance Li-CO2 batteries with NiO-CNT cathodes. J. Mater. Chem. A 2018, 6, 2792–2796.

    CAS  Google Scholar 

  290. Liu, Q. N.; Hu, Z.; Li, L.; Li, W. J.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L. Facile synthesis of birnessite δ-MnO2 and carbon nanotube composites as effective catalysts for Li-CO2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 16585–16593.

    CAS  Google Scholar 

  291. Li, S.; Liu, Y.; Zhou, J.; Hong, S.; Dong, Y.; Wang, J.; Gao, X.; Qi, P.; Han, Y.; Wang, B. Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li-CO2 batteries. Energy Environ. Sci. 2019, 12, 1046–1054.

    CAS  Google Scholar 

  292. Guo, Z. Y.; Li, J. L.; Qi, H. C.; Sun, X. M.; Li, H. D.; Tamirat, A. G.; Liu, J.; Wang, Y. G.; Wang, L. A highly reversible long-life Li-CO2 battery with a RuP2-based catalytic cathode. Small 2019, 15, 1803246.

    Google Scholar 

  293. Wu, M.; Kim, J. Y.; Park, H.; Kim, D. Y.; Cho, K. M.; Lim, E.; Chae, O. B.; Choi, S.; Kang, Y. K.; Kim, J. et al. Understanding reaction pathways in high dielectric electrolytes using β-Mo2C as a catalyst for Li-CO2 batteries. ACS Appl. Mater. Interfaces 2020, 12, 32633–32641.

    CAS  Google Scholar 

  294. Ma, J. L.; Bao, D.; Shi, M. M.; Yan, J. M.; Zhang, X. B. Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2017, 2, 525–532.

    CAS  Google Scholar 

  295. Yang, Y. J.; Zhang, N. B.; Zou, Z. L.; Yi, X. H.; Liu, J. Q. Atomic layer deposited Ru/Mo2C heterostructure for efficient nitrogen reduction and nitrogen evolution in Li-N2 battery. Chem. Eng. J. 2022, 435, 135148.

    CAS  Google Scholar 

  296. Liu, Y. K.; Li, J.; Shen, Q. Y.; Zhang, J.; He, P. G.; Qu, X. H.; Liu, Y. C. Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. eScience 2022, 2, 10–31.

    Google Scholar 

  297. Lin, X. T.; Sun, Q.; Doyle Davis, K.; Li, R. Y.; Sun, X. L. The application of carbon materials in nonaqueous Na-O2 batteries. Carbon Energy 2019, 1, 141–164.

    CAS  Google Scholar 

  298. Sun, Q.; Yadegari, H.; Banis, M. N.; Liu, J.; Xiao, B. W.; Wang, B. Q.; Lawes, S.; Li, X.; Li, R. Y.; Sun, X. L. Self-stacked nitrogen-doped carbon nanotubes as long-life air electrode for sodium-air batteries: Elucidating the evolution of discharge product morphology. Nano Energy 2015, 12, 698–708.

    CAS  Google Scholar 

  299. Jian, Z. L.; Chen, Y.; Li, F. J.; Zhang, T.; Liu, C.; Zhou, H. S. High capacity Na-O2 batteries with carbon nanotube paper as binder-free air cathode. J. Power Sources 2014, 251, 466–469.

    CAS  Google Scholar 

  300. Sun, Q.; Liu, J.; Xiao, B. W.; Wang, B. Q.; Banis, M.; Yadegari, H.; Adair, K. R.; Li, R. Y.; Sun, X. L. Visualizing the oxidation mechanism and morphological evolution of the cubic-shaped superoxide discharge product in Na-air batteries. Adv. Funct. Mater. 2019, 29, 1808332.

    Google Scholar 

  301. Enterría, M.; Gómez-Urbano, J. L.; Munuera, J. M.; Villar-Rodil, S.; Carriazo, D.; Paredes, J. I.; Ortiz-Vitoriano, N. Boosting the performance of graphene cathodes in Na-O2 batteries by exploiting the multifunctional character of small biomolecules. Small 2021, 17, 2005034.

    Google Scholar 

  302. Li, Y. L.; Yadegari, H.; Li, X. F.; Banis, M. N.; Li, R. Y.; Sun, X. L. Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium-air batteries. Chem. Commun. 2013, 49, 11731–11733.

    CAS  Google Scholar 

  303. Zheng, Z.; Jiang, J. C.; Guo, H. P.; Li, C.; Konstantinov, K.; Gu, Q. F.; Wang, J. Z. Tuning NaO2 formation and decomposition routes with nitrogen-doped nanofibers for low overpotential Na-O2 batteries. Nano Energy 2021, 81, 105529.

    CAS  Google Scholar 

  304. Xia, C.; Black, R.; Fernandes, R.; Adams, B.; Nazar, L. F. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat. Chem. 2015, 7, 496–501.

    CAS  Google Scholar 

  305. Yadegari, H.; Li, Y. L.; Banis, M. N.; Li, X. F.; Wang, B. Q.; Sun, Q.; Li, R. Y.; Sham, T. K.; Cui, X. Y.; Sun, X. L. On rechargeability and reaction kinetics of sodium-air batteries. Energy Environ. Sci. 2014, 7, 3747–3757.

    CAS  Google Scholar 

  306. Hu, X. F.; Li, Z. F.; Zhao, Y. R.; Sun, J. C.; Zhao, Q.; Wang, J. B.; Tao, Z. L.; Chen, J. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 2017, 3, e1602396.

    Google Scholar 

  307. Shu, C. Z.; Lin, Y. M.; Zhang, B. S.; Abd Hamid, S. B.; Su, D. S. Mesoporous boron-doped onion-like carbon as long-life oxygen electrode for sodium-oxygen batteries. J. Mater. Chem. A 2016, 4, 6610–6619.

    CAS  Google Scholar 

  308. Sun, B.; Kretschmer, K.; Xie, X. Q.; Munroe, P.; Peng, Z. Q.; Wang, G. X. Hierarchical porous carbon spheres for high-performance Na-O2 batteries. Adv. Mater. 2017, 29, 1606816.

    Google Scholar 

  309. Enterría, M.; Botas, C.; Gómez-Urbano, J. L.; Acebedo, B.; López del Amo, J. M.; Carriazo, D.; Rojo, T.; Ortiz-Vitoriano, N. Pathways towards high performance Na-O2 batteries: Tailoring graphene aerogel cathode porosity & nanostructure. J. Mater. Chem. A 2018, 6, 20778–20787.

    Google Scholar 

  310. Díaz-Duran, A. K.; Roncaroli, F. MOF derived mesoporous nitrogen doped carbons with high activity towards oxygen reduction. Electrochim. Acta 2017, 251, 638–650.

    Google Scholar 

  311. Kang, J. H.; Kwak, W. J.; Aurbach, D.; Sun, Y. K. Sodium oxygen batteries: One step further with catalysis by ruthenium nanoparticles. J. Mater. Chem. A 2017, 5, 20678–20686.

    CAS  Google Scholar 

  312. Zhang, S. P.; Wen, Z. Y.; Rui, K.; Shen, C.; Lu, Y.; Yang, J. H. Graphene nanosheets loaded with Pt nanoparticles with enhanced electrochemical performance for sodium-oxygen batteries. J. Mater. Chem. A 2015, 3, 2568–2571.

    CAS  Google Scholar 

  313. Ma, J. L.; Meng, F. L.; Xu, D.; Zhang, X. B. Co-embedded N-doped carbon fibers as highly efficient and binder-free cathode for Na-O2 batteries. Energy Storage Mater. 2017, 6, 1–8.

    Google Scholar 

  314. Wu, F.; Xing, Y.; Lai, J. N.; Zhang, X. X.; Ye, Y. S.; Qian, J.; Li, L.; Chen, R. J. Micrometer-sized RuO2 catalysts contributing to formation of amorphous Na-deficient sodium peroxide in Na-O2 batteries. Adv. Funct. Mater. 2017, 27, 1700632.

    Google Scholar 

  315. Liu, Y. Z.; Chi, X. W.; Han, Q.; Du, Y. X.; Yang, J. H.; Liu, Y. Vertically self-standing C@NiCo2O4 nanoneedle arrays as effective binder-free cathodes for rechargeable Na-O2 batteries. J. Alloys Compd. 2019, 772, 693–702.

    CAS  Google Scholar 

  316. Hu, X. F.; Sun, J. C.; Li, Z. F.; Zhao, Q.; Chen, C. C.; Chen, J. Rechargeable room-temperature Na-CO2 batteries. Angew. Chem., Int. Ed. 2016, 55, 6482–6486.

    CAS  Google Scholar 

  317. Fang, C.; Luo, J. M.; Jin, C. B.; Yuan, H. D.; Sheng, O. W.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J. et al. Enhancing catalyzed decomposition of Na2CO3 with Co2MnOx. nanowire-decorated carbon fibers for advanced Na-CO2 batteries. ACS Appl. Mater. Interfaces 2018, 10, 17240–17248.

    CAS  Google Scholar 

  318. Xiao, N.; Rooney, R. T.; Gewirth, A. A.; Wu, Y. Y. The long-term stability of KO2 in K-O2 batteries. Angew. Chem., Int. Ed. 2018, 57, 1227–1231.

    CAS  Google Scholar 

  319. Liu, S.; Yang, H. B.; Huang, X.; Liu, L. H.; Cai, W. Z.; Gao, J. J.; Li, X. N.; Zhang, T.; Huang, Y. Q.; Liu, B. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction. Adv. Funct. Mater. 2018, 28, 1800499.

    Google Scholar 

  320. Wu, Z. Z.; Xu, J. T.; Zhang, Q.; Wang, H. B.; Ye, S. H.; Wang, Y. L.; Lai, C. LiI embedded meso-micro porous carbon polyhedrons for lithium iodine battery with superior lithium storage properties. Energy Storage Mater. 2018, 10, 62–68.

    Google Scholar 

  321. Li, K.; Chen, S.; Chen, S.; Liu, X. E.; Pan, W.; Zhang, J. T. Nitrogen, phosphorus co-doped carbon cloth as self-standing electrode for lithium-iodine batteries. Nano Res. 2019, 12, 549–555.

    CAS  Google Scholar 

  322. Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhang, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy, in press, https://doi.org/10.26599/NRE.2022.9120025.

  323. Chen, S.; Zhang, J. T. Redox reactions of halogens for reversible electrochemical energy storage. Dalton Trans. 2020, 49, 9929–9934.

    CAS  Google Scholar 

  324. Zhao, Y.; Wang, L.; Byon, H. R. High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nat. Commun. 2013, 4, 1896.

    Google Scholar 

  325. Zhao, Q.; Lu, Y. Y.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Rechargeable lithium-iodine batteries with iodine/nanoporous carbon cathode. Nano Lett. 2015, 15, 5982–5987.

    CAS  Google Scholar 

  326. Su, Z.; Wei, Z. X.; Lai, C.; Deng, H. Q.; Liu, Z. X.; Ma, J. M. Robust pseudo-capacitive Li-I2 battery enabled by catalytic, adsorptive N-doped graphene interlayer. Energy Storage Mater. 2018, 14, 129–135.

    Google Scholar 

  327. Sun, B.; Wang, P.; Xu, J.; Jin, Q.; Zhang, Z.; Wu, H.; Jin, Y. A garnet-electrolyte based molten Li-I2 battery with high performance. Nano Res. 2021, 15, 4076–4082.

    Google Scholar 

  328. Chen, Q. W.; Chen, S.; Zhao, L. L.; Ma, J. Z.; Wang, H. S.; Zhang, J. T. Interface coating of iron nitride on carbon cloth for reversible lithium redox in rechargeable battery. Chem. Eng. J. 2022, 431, 133961.

    CAS  Google Scholar 

  329. Wang, Y. L.; Sun, Q. L.; Zhao, Q. Q.; Cao, J. S.; Ye, S. H. Rechargeable lithium/iodine battery with superior high-rate capability by using iodine-carbon composite as cathode. Energy Environ. Sci. 2011, 4, 3947–3950.

    CAS  Google Scholar 

  330. Zhang, Q.; Wu, Z. Z.; Liu, F.; Liu, S.; Liu, J.; Wang, Y. L.; Yan, T. Y. Encapsulating a high content of iodine into an active graphene substrate as a cathode material for high-rate lithium-iodine batteries. J. Mater. Chem. A 2017, 5, 15235–15242.

    CAS  Google Scholar 

  331. Li, K. D.; Lin, B.; Li, Q. F.; Wang, H. F.; Zhang, S.; Deng, C. Anchoring iodine to N-doped hollow carbon fold-hemisphere: Toward a fast and stable cathode for rechargeable lithium-iodine batteries. ACS Appl. Mater. Interfaces 2017, 9, 20508–20518.

    CAS  Google Scholar 

  332. Lu, K.; Hu, Z. Y.; Ma, J. Z.; Ma, H. Y.; Dai, L. M.; Zhang, J. T. A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry. Nat. Commun. 2017, 8, 527.

    Google Scholar 

  333. Li, K.; Hu, Z. Y.; Ma, J. Z.; Chen, S.; Mu, D. X.; Zhang, J. T. A 3D and stable lithium anode for high-performance lithium-iodine batteries. Adv. Mater. 2019, 31, 1902399.

    Google Scholar 

  334. Tang, X.; Zhou, D.; Li, P.; Guo, X.; Wang, C. Y.; Kang, F. Y.; Li, B. H.; Wang, G. X. High-performance quasi-solid-state MXene-based Li-I batteries. ACS Cent. Sci. 2019, 5, 365–373.

    CAS  Google Scholar 

  335. Su, Z.; Tong, C. J.; He, D. Q.; Lai, C.; Liu, L. M.; Wang, C.; Xi, K. Ultra-small B2O3 nanocrystals grown in situ on highly porous carbon microtubes for lithium-iodine and lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 8541–8547.

    CAS  Google Scholar 

  336. Wang, Y. L.; Wang, X.; Tian, L. Y.; Sun, Y. Y.; Ye, S. H. Fixing of highly soluble Br2/Br in porous carbon as a cathode material for rechargeable lithium ion batteries. J. Mater. Chem. A 2015, 3, 1879–1883.

    CAS  Google Scholar 

  337. Barpanda, P.; Fanchini, G.; Amatucci, G. G. Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon 2011, 49, 2538–2548.

    CAS  Google Scholar 

  338. Peterson, B. B.; Andrews, E. M.; Hung, F.; Flake, J. C. Carbonized metal-organic framework cathodes for secondary lithium-bromine batteries. J. Power Sources 2021, 492, 229658.

    CAS  Google Scholar 

  339. Xi, X. L.; Li, X. F.; Wang, C. H.; Lai, Q. Z.; Cheng, Y. H.; Xu, P. C.; Zhang, H. M. Non-aqueous lithium bromine battery of high energy density with carbon coated membrane. J. Energy Chem. 2017, 26, 639–646.

    Google Scholar 

  340. Pan, H. L.; Li, B.; Mei, D. H.; Nie, Z. M.; Shao, Y. Y.; Li, G. S.; Li, X. S.; Han, K. S.; Mueller, K. T.; Sprenkle, V. et al. Controlling solid—liquid conversion reactions for a highly reversible aqueous zinc-iodine battery. ACS Energy Lett. 2017, 2, 2674–2680.

    CAS  Google Scholar 

  341. Bai, C.; Cai, F. S.; Wang, L. C.; Guo, S. Q.; Liu, X. Z.; Yuan, Z. H. A sustainable aqueous Zn-I2 battery. Nano Res. 2018, 11, 3548–3554.

    CAS  Google Scholar 

  342. Biswas, S.; Senju, A.; Mohr, R.; Hodson, T.; Karthikeyan, N.; Knehr, K. W.; Hsieh, A. G.; Yang, X. F.; Koel, B. E.; Steingart, D. A. Minimal architecture zinc-bromine battery for low cost electrochemical energy storage. Energy Environ. Sci. 2017, 10, 114–120.

    CAS  Google Scholar 

  343. Chen, S.; Chen, Q. W.; Ma, J. Z.; Wang, J. J.; Hui, K. S.; Zhang, J. T. Interface coordination stabilizing reversible redox of zinc for high-performance zinc-iodine batteries. Small 2022, 18, 2200168.

    CAS  Google Scholar 

  344. He, Y. L.; Liu, M. M.; Chen, S.; Zhang, J. T. Shapeable carbon fiber networks with hierarchical porous structure for high-performance Zn-I2 batteries. Sci. China Chem. 2022, 65, 391–398.

    CAS  Google Scholar 

  345. Lu, K.; Zhang, H.; Song, B.; Pan, W.; Ma, H. Y.; Zhang, J. T. Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery. Electrochim. Acta 2019, 296, 755–761.

    CAS  Google Scholar 

  346. Xu, J. W.; Wang, J. G.; Ge, L. H.; Sun, J. R.; Ma, W. Q.; Ren, M. M.; Cai, X. X.; Liu, W. L.; Yao, J. S. ZIF-8 derived porous carbon to mitigate shuttle effect for high performance aqueous zinc-iodine batteries. J. Colloid Interface Sci. 2022, 610, 98–105.

    CAS  Google Scholar 

  347. Xu, Y.; Xie, C. X.; Li, T. Y.; Li, X. F. A high energy density bromine-based flow battery with two-electron transfer. ACS Energy Lett. 2022, 7, 1034–1039.

    CAS  Google Scholar 

  348. Gong, D. C.; Wang, B.; Zhu, J. Y.; Podila, R.; Rao, A. M.; Yu, X. Z.; Xu, Z.; Lu, B. G. An iodine quantum dots based rechargeable sodium-iodine battery. Adv. Energy Mater. 2017, 7, 1601885.

    Google Scholar 

  349. Lee, J. H.; Byun, Y.; Jeong, G. H.; Choi, C.; Kwen, J.; Kim, R.; Kim, I. H.; Kim, S. O.; Kim, H. T. High-energy efficiency membraneless flowless Zn-Br battery: Utilizing the electrochemical-chemical growth of polybromides. Adv. Mater. 2019, 31, 1904524.

    CAS  Google Scholar 

  350. Wang, F. X.; Yang, H. L.; Zhang, J.; Zhang, P. P.; Wang, G.; Zhuang, X. D.; Cuniberti, G.; Feng, X. L. A dual-stimuli-responsive sodium-bromine battery with ultrahigh energy density. Adv. Mater. 2018, 30, 1800028.

    Google Scholar 

  351. Zhang, G. M.; Wang, H. F.; Zhang, S.; Deng, C. Using core—shell interlinked polymer@C-iodine hollow spheres to synergistically depress polyiodide shuttle and boost kinetics for iodine-based batteries. J. Mater. Chem. A 2018, 6, 9019–9031.

    CAS  Google Scholar 

  352. Hu, Y. X.; Sun, D.; Luo, B.; Wang, L. Z. Recent progress and future trends of aluminum batteries. Energy Technol. 2019, 7, 86–106.

    Google Scholar 

  353. Jiang, M.; Fu, C. P.; Meng, P. Y.; Ren, J. M.; Wang, J.; Bu, J. F.; Dong, A. P.; Zhang, J.; Xiao, W.; Sun, B. D. Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries. Adv. Mater. 2022, 34, 2102026.

    CAS  Google Scholar 

  354. Tian, H. J.; Zhang, S. L.; Meng, Z.; He, W.; Han, W. Q. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2017, 2, 1170–1176.

    CAS  Google Scholar 

  355. Zhang, S. L.; Tan, X. J.; Meng, Z.; Tian, H. J.; Xu, F. F.; Han, W. Q. Naturally abundant high-performance rechargeable aluminum/iodine batteries based on conversion reaction chemistry. J. Mater. Chem. A 2018, 6, 9984–9996.

    CAS  Google Scholar 

  356. Yang, S.; Li, C.; Lv, H. M.; Guo, X.; Wang, Y. B.; Han, C. P.; Zhi, C. Y.; Li, H. F. High-rate aqueous aluminum-ion batteries enabled by confined iodine conversion chemistry. Small Methods 2021, 5, 2100611.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the funding supported by the National Natural Scientific Foundation of China (No. 22175108), the Natural Scientific Foundation of Shandong Province (No. ZR2020JQ09), and the China Postdoctoral Science Foundation (No. 2020M672054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wang or Jintao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Chen, Q., Ding, S. et al. Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Res. 16, 4246–4276 (2023). https://doi.org/10.1007/s12274-022-5247-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5247-9

Keywords

Navigation