Skip to main content
Log in

Enabling efficient NIR-II luminescence in lithium-sublattice core—shell nanocrystals towards Stark sublevel based nanothermometry

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The luminescence in the second near-infrared (NIR-II) spectral region (1,000–1,700 nm) has recently attracted great attention for emerging biological applications owing to its merit of deep tissue bioimaging and high spatiotemporal resolution. However, it still remains a challenge to achieve the highly efficient NIR-II emissions of lanthanides in nanomaterials. Herein, we report an ideal design of sensitizing lithium sublattice core—shell nanocrystals for efficient NIR-II emission properties from a set of lanthanide emitters including Er3+, Tm3+, Ho3+, Pr3+, and Nd3+. In particular, the typical NIR-II emission of Er3+ at 1.5 µm was greatly enhanced by further manipulating the energy transfer via Er3+—Ce3+ cross-relaxation, and the quantum yield can reach up to 35.74% under 980 nm excitation (12.5 W·cm−2), which is the highest value to the best of our knowledge. The 808 nm responsive efficient NIR-II emission was also enabled at the single-particle level through rational core—shell—shell structure design. Moreover, the lithium-sublattice provides an obvious spectral Stark-splitting feature, which can be used in the ultrasensitive NIR-II nanothermometer with relative sensitivity of 0.248% K−1 and excellent thermal cycling stability. These results open a door to the research of new kinds of efficient NIR-II luminescent materials, showing great promise in various frontier fields such as deep tissue nanothermometry and in vivo bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.

    Article  CAS  Google Scholar 

  2. Dong, H.; Du, S. R.; Zheng, X. Y.; Lyu, G. M.; Sun, L. D.; Li, L. D.; Zhang, P. Z.; Zhang, C.; Yan, C. H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815.

    Article  CAS  Google Scholar 

  3. Sun, Q. C.; Ding, Y. C.; Sagar, D. M.; Nagpal, P. Photon upconversion towards applications in energy conversion and bioimaging. Prog. Surf. Sci. 2017, 92, 281–316.

    Article  CAS  Google Scholar 

  4. Wanderi, K.; Cui, Z. Q. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning. Exploration 2022, 2, 20210097.

    Article  Google Scholar 

  5. Yang, Y. J.; Tu, D. T.; Zhang, Y. Q.; Zhang, P.; Chen, X. Y. Recent advances in design of lanthanide-containing NIR-II luminescent nanoprobes. iScience 2021, 24, 102062.

    Article  CAS  Google Scholar 

  6. Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the biological windows: Current perspectives on fluorescent bioprobes emitting above 1,000 nm. Nanoscale Horiz. 2016, 1, 168–184.

    Article  CAS  Google Scholar 

  7. Zhong, Y. T.; Ma, Z. R.; Wang, F. F.; Wang, X.; Yang, Y. J.; Liu, Y. L.; Zhao, X.; Li, J. C.; Du, H. T.; Zhang, M. X. et al. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat. Biotechnol. 2019, 37, 1322–1331.

    Article  CAS  Google Scholar 

  8. Zhou, B.; Shi, B. Y.; Jin, D. Y.; Liu, X. G. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924–936.

    Article  CAS  Google Scholar 

  9. Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 60, 16294–16308.

    Article  CAS  Google Scholar 

  10. Wang, S. F.; Li, B. H.; Zhang, F. Molecular fluorophores for deep-tissue bioimaging. ACS Cent. Sci. 2020, 6, 1302–1316.

    Article  CAS  Google Scholar 

  11. Bruns, O. T.; Bischof, T. S.; Harris, D. K.; Franke, D.; Shi, Y. X.; Riedemann, L.; Bartelt, A.; Jaworski, F. B.; Carr, J. A.; Rowlands, C. J. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 2017, 1, 0056.

    Article  CAS  Google Scholar 

  12. Ren, F.; Liu, H. H.; Zhang, H.; Jiang, Z. L.; Xia, B.; Genevois, C.; He, T.; Allix, M.; Sun, Q.; Li, Z. et al. Engineering NIR-IIb fluorescence of Er-based lanthanide nanoparticles for through-skull targeted imaging and imaging-guided surgery of orthotopic glioma. Nano Today 2020, 34, 100905.

    Article  CAS  Google Scholar 

  13. Xu, J. T.; Gulzar, A.; Yang, P. P.; Bi, H. T.; Yang, D.; Gai, S. L.; He, F.; Lin, J.; Xing, B. G.; Jin, D. Y. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord. Chem. Rev. 2019, 381, 104–134.

    Article  CAS  Google Scholar 

  14. Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young, A. N.; Nie, S. M. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 2013, 6, 143–162.

    Article  CAS  Google Scholar 

  15. Loo, J. F. C.; Chien, Y. H.; Yin, F.; Kong, S. K.; Ho, H. P.; Yong, K. T. Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord. Chem. Rev. 2019, 400, 213042.

    Article  CAS  Google Scholar 

  16. Liu, S. B.; Yan, L.; Huang, J. S.; Zhang, Q. Y.; Zhou, B. Controlling upconversion in emerging multilayer core-shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729–1765.

    Article  CAS  Google Scholar 

  17. Fan, Y.; Zhang, F. A new generation of NIR-II probes: Lanthanide-based nanocrystals for bioimaging and biosensing. Adv. Opt. Mater. 2019, 3, 1801417.

    Article  Google Scholar 

  18. Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat. Commun. 2013, 4, 2199.

    Article  CAS  Google Scholar 

  19. Yu, S. H.; Tu, D. T.; Lian, W.; Xu, J.; Chen, X. Y. Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications. Sci. China Mater. 2019, 62, 1071–1086.

    Article  CAS  Google Scholar 

  20. Li, H.; Wang, X.; Ohulchanskyy, T. Y.; Chen, G. Y. Lanthanide-doped near-infrared nanoparticles for biophotonics. Adv. Mater. 2021, 33, 2000678.

    Article  CAS  Google Scholar 

  21. Hu, Z. Y.; Huang, J. S.; Yan, L.; Zhou, B. Enhancing NIR-II luminescence of erbium sublattice through lanthanide-mediated energy modulation. Optik 2022, 259, 169037.

    Article  CAS  Google Scholar 

  22. Xie, Y. L.; Chen, Q.; Wang, M.; Chen, W. L.; Quan, Z. W.; Li, C. X. Highly doped NaErF4-based nanocrystals for multi-tasking application. J. Rare Earths 2021, 39, 1467–1476.

    Article  CAS  Google Scholar 

  23. Zhong, Y. T.; Ma, Z. R.; Zhu, S. J.; Yue, J. Y.; Zhang, M. X.; Antaris, A. L.; Yuan, J.; Cui, R.; Wan, H.; Zhou, Y. et al. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1,500 nm. Nat. Commun. 2017, 8, 737.

    Article  Google Scholar 

  24. Liu, S. B.; Huang, J. S.; Yan, L.; Song, N.; Zhang, P.; He, J. S.; Zhou, B. Multiphoton ultraviolet upconversion through selectively controllable energy transfer in confined sensitizing sublattices towards improved solar photocatalysis. J. Mater. Chem. A 2021, 9, 4007–4017.

    Article  CAS  Google Scholar 

  25. Liu, Q.; Zhang, Y. X.; Peng, C. S.; Yang, T. S.; Joubert, L. M.; Chu, S. Single upconversion nanoparticle imaging at sub-10 W·cm−2 irradiance. Nat. Photonics 2018, 12, 548–553.

    Article  CAS  Google Scholar 

  26. Liu, S. B.; Yan, L.; Li, Q. Q.; Huang, J. S.; Tao, L. L.; Zhou, B. Trichannel photon emission of lanthanides in lithium-sublattice core-shell nanostructures for multiple anti-counterfeiting. Chem. Eng. J. 2020, 397, 125451.

    Article  CAS  Google Scholar 

  27. Cheng, T.; Marin, R.; Skripka, A.; Vetrone, F. Small and bright lithium-based upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 12890–12899.

    Article  CAS  Google Scholar 

  28. Jin, L. M.; Wu, Y. K.; Wang, Y. J.; Liu, S.; Zhang, Y. Q.; Li, Z. Y.; Chen, X.; Zhang, W. F.; Xiao, S. M.; Song, Q. H. Massmanufactural lanthanide-based ultraviolet B microlasers. Adv. Mater. 2019, 31, 1807079.

    Article  Google Scholar 

  29. Chen, B.; Kong, W.; Wang, N.; Zhu, G. Y.; Wang, F. Oleylamine-mediated synthesis of small NaYbF4 nanoparticles with tunable size. Chem. Mater. 2019, 31, 4779–4786.

    Article  CAS  Google Scholar 

  30. Zhao, J. X.; Chen, B.; Chen, X.; Zhang, X.; Sun, T. Y.; Su, D.; Wang, F. Tuning epitaxial growth on NaYbF4 upconversion nanoparticles by strain management. Nanoscale 2020, 12, 13973–13979.

    Article  CAS  Google Scholar 

  31. Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006, 128, 7444–7445.

    Article  CAS  Google Scholar 

  32. Zhou, B.; Yan, L.; Huang, J. S.; Liu, X. L.; Tao, L. L.; Zhang, Q. Y. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice. Nat. Photonics 2020, 14, 760–766.

    Article  CAS  Google Scholar 

  33. Fischer, S.; Bronstein, N. D.; Swabeck, J. K.; Chan, E. M.; Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals. Nano Lett. 2016, 16, 7241–7247.

    Article  CAS  Google Scholar 

  34. Lei, X. L.; Li, R. F.; Tu, D. T.; Shang, X. Y.; Liu, Y.; You, W. W.; Sun, C. X.; Zhang, F.; Chen, X. Y. Intense near-infrared-II luminescence from NaCeF4:Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging. Chem. Sci. 2018, 9, 4682–4688.

    Article  CAS  Google Scholar 

  35. Wang, Y. F.; Liu, G. Y.; Sun, L. D.; Xiao, J. W.; Zhou, J. C.; Yan, C. H. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200–7206.

    Article  CAS  Google Scholar 

  36. Huang, P.; Zheng, W.; Tu, D. T.; Shang, X. Y.; Zhang, M. R.; Li, R. F.; Xu, J.; Liu, Y.; Chen, X. Y. Unraveling the electronic structures of neodymium in LiLuF4 nanocrystals for ratiometric temperature sensing. Adv. Sci. 2019, 6, 1802282.

    Article  Google Scholar 

  37. Wei, S. Q.; Shang, X. Y.; Huang, P.; Zheng, W.; Ma, E.; Xu, J.; Zhang, M. R.; Tu, D. T.; Chen, X. Y. Polarized upconversion luminescence from a single LiLuF4:Yb3+/Er3+ microcrystal for orientation tracking. Sci. China Mater. 2022, 65, 220–228.

    Article  CAS  Google Scholar 

  38. Karayianis, N. Theoretical energy levels and g values for the 4I terms of Nd3+ and Er3+ in LiYF4. J. Phys. Chem. Solids 1971, 32, 2385–2391.

    Article  CAS  Google Scholar 

  39. Couto dos Santos, M. A.; Antic-Fidancev, E.; Gesland, J. Y.; Krupa, J. C.; Lemaître-Blaise, M.; Porcher, P. Absorption and fluorescence of Er3+-doped LiYF4: Measurements and simulation. J. Alloys Compd. 1998, 275-277, 435–441.

    Article  Google Scholar 

  40. Heyde, K.; Binnemans, K.; Görller-Walrand, C. Spectroscopic properties of LiErF4. J. Chem. Soc., Faraday Trans. 1998, 94, 843–849.

    Article  CAS  Google Scholar 

  41. Liu, S. F.; Ming, H.; Cui, J.; Liu, S. B.; You, W. X.; Ye, X. Y.; Yang, Y. M.; Nie, H. P.; Wang, R. X. Color-tunable upconversion luminescence and multiple temperature sensing and optical heating properties of Ba3Y4O9:Er3+/Yb3+ phosphors. J. Phys. Chem. C 2018, 122, 16289–16303.

    Article  CAS  Google Scholar 

  42. Liu, H. M.; Yan, L.; Huang, J. S.; An, Z. C.; Sheng, W.; Zhou, B. Ultrasensitive thermochromic upconversion in core-shell-shell nanoparticles for nanothermometry and anticounterfeiting. J. Phys. Chem. Lett. 2022, 13, 2306–2312.

    Article  CAS  Google Scholar 

  43. Yan, L.; Huang, J. S.; An, Z. C.; Zhang, Q. Y.; Zhou, B. Activating ultrahigh thermoresponsive upconversion in an erbium sublattice for nanothermometry and information security. Nano Lett. 2022, 22, 7042–7048.

    Article  CAS  Google Scholar 

  44. Xiang, G. T.; Yang, M. L.; Xia, Q.; Jiang, S.; Wang, Y. J.; Zhou, X. J.; Li, L.; Ma, L.; Wang, X. J.; Zhang, J. H. Ultrasensitive optical thermometer based on abnormal thermal quenching Stark transitions operating beyond 1,500 nm. J. Am. Ceram. Soc. 2021, 104, 5784–5793.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51972119 and 52272151), the Research Project of Education Department of Jiangxi Province (No. GJJ210846), and the Doctoral Scientific Research Foundation of Jiangxi University of Science and Technology (No. 205200100554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhou.

Electronic supplementary material

12274_2022_5121_MOESM1_ESM.pdf

Enabling efficient NIR-II luminescence in lithium-sublattice core-shell nanocrystals towards Stark sublevel based nanothermometry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., An, Z., Huang, J. et al. Enabling efficient NIR-II luminescence in lithium-sublattice core—shell nanocrystals towards Stark sublevel based nanothermometry. Nano Res. 16, 1626–1633 (2023). https://doi.org/10.1007/s12274-022-5121-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5121-9

Keywords

Navigation