Skip to main content
Log in

From synthesis to applications of biomolecule-protected luminescent gold nanoclusters

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Gold nanoclusters (AuNCs) are a class of novel luminescent nanomaterials that exhibit unique properties of ultra-small size, featuring strong anti-photo-bleaching ability, substantial Stokes shift, good biocompatibility, and low toxicity. Various biomolecules have been developed as templates or ligands to protect AuNCs with enhanced stability and luminescent properties for biomedical applications. In this review, the synthesis of AuNCs based on biomolecules including amino acids, peptides, proteins and DNA are summarized. Owing to the advantages of biomolecule-protected AuNCs, they have been employed extensively for diverse applications. The biological applications, particularly in bioimaging, biosensing, disease therapy and biocatalysis have been described in detail herein. Finally, current challenges and future potential prospects of bio-templated AuNCs in biological research are briefly discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright 2009, American Chemical Society

Fig. 6

Copyright 2017, Wiley–VCH

Fig. 7

Copyright 2012, IOP Publishing Ltd

Fig. 8

Copyright 2019, WILEY‐VCH. (B) Specific bone targeting and high resolution NIR-II fluorescence imaging of the whole mouse body. Reprinted with permission from Ref. [107]. Copyright 2020, Wiley‐VCH

Fig. 9

Copyright 2022, Elsevier. (B) Formation of dual-ligand-coated AuNCs and the NIR-II fluorescence of AuNCs used in vivo imaging. Reprinted with permission from Ref. [117]. Copyright 2022, Pang. et al. Published by American Chemical Society

Fig. 10

Copyright 2010, Royal Society of Chemistry. (B) Detection of Hg2+ using BSA-AuNCs with combination of GO hybrid membrane. Reprinted with permission from Ref. [120]. Copyright 2018, Elsevier. (C) Detection of GSH and Cu2+ with insulin-capped AuNCs. Reprinted with permission from Ref. [122]. Copyright 2023, American Chemical Society. (D) Synthesis of L-proline-stabilized fluorescent AuNCs and the application for Fe3+ detection. Reprinted with permission from Ref. [49]. Copyright 2013, Elsevier

Fig. 11

Copyright 2018, American Chemical Society. (B) Schematic illustration of synthesis of NIR-II BSA-AuNCs combining with PDT against breast cancer and methicillin-resistant Staphylococcus aureus (MRSA) infection. Reprinted with permission from Ref. [151]. Copyright 2022, Qing Dan et al. Published by MDPI

Fig. 12

Copyright 2019, American Chemical Society. (B) Schematic illustration of the cooperation of DNase-AuNCs with PTT and PDT to damage bacteria. Reprinted with permission from Ref. [158]. Copyright 2020, American Chemical Society. (C) Schematic illustration of the synthesis of cationic AuAgNCs@BSA and their applications in bioimaging and antibacterial agents. Reprinted with permission from Ref. [161]. Copyright 2022, Tsinghua University Press. (D) Schematic illustration of QA-AuNCs targeting multidrug-resistant bacteria. Reprinted with permission from Ref. [32]. Copyright 2018, Wiley–VCH

Fig. 13

Copyright 2021, Elsevier B.V. (B) Schematic illustration of the synthesis of LC-AuNCs and their application in diabetic wound healing. Reprinted with permission from Ref. [33]. Copyright 2024, Elsevier B.V

Similar content being viewed by others

References

  1. Yau SH, Varnavski O, Goodson T III. An ultrafast look at Au nanoclusters. Acc Chem Res. 2013;46(7):1506–16.

    Article  CAS  PubMed  Google Scholar 

  2. Yahia-Ammar A, Sierra D, Mérola F, Hildebrandt N, Le Guével X. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano. 2016;10(2):2591–9.

    Article  CAS  PubMed  Google Scholar 

  3. Whetten RL, Weissker H-C, Pelayo JJ, Mullins SM, López-Lozano X, Garzón IL. Chiral-icosahedral (I) symmetry in ubiquitous metallic cluster compounds (145A, 60X): structure and bonding principles. Acc Chem Res. 2019;52(1):34–43.

    Article  CAS  PubMed  Google Scholar 

  4. Zhou M, Du X, Wang H, Jin R. The critical number of gold atoms for a metallic state nanocluster: resolving a decades-long question. ACS Nano. 2021;15(9):13980–92.

    Article  CAS  PubMed  Google Scholar 

  5. Chen L-Y, Wang C-W, Yuan Z, Chang H-T. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem. 2015;87(1):216–29.

    Article  CAS  PubMed  Google Scholar 

  6. Halawa M, Lai J, Xu G. Gold nanoclusters: synthetic strategies and recent advances in fluorescent sensing. Mater Today Nano. 2018;3:9–27.

    Article  Google Scholar 

  7. Palmal S, Jana NR. Gold nanoclusters with enhanced tunable fluorescence as bioimaging probes. Wires Nanomed Nanobi. 2014;6(1):102–10.

    Article  CAS  Google Scholar 

  8. Zhang KY, Yu Q, Wei H, Liu S, Zhao Q, Huang W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem Rev. 2018;118(4):1770–839.

    Article  CAS  PubMed  Google Scholar 

  9. Chen W, Chen S. Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. Angew Chem. 2009;121(24):4450–3.

    Article  Google Scholar 

  10. Li G, Abroshan H, Liu C, Zhuo S, Li Z, Xie Y, et al. Tailoring the electronic and catalytic properties of Au25 nanoclusters via ligand engineering. ACS Nano. 2016;10(8):7998–8005.

    Article  CAS  PubMed  Google Scholar 

  11. Du Y, Sheng H, Astruc D, Zhu M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem Rev. 2019;120(2):526–622.

    Article  PubMed  Google Scholar 

  12. Shang L, Stockmar F, Azadfar N, Nienhaus GU. Intracellular thermometry by using fluorescent gold nanoclusters. Angew Chem Int Ed. 2013;52(42):11154–7.

    Article  CAS  Google Scholar 

  13. Zheng Y, Lai L, Liu W, Jiang H, Wang X. Recent advances in biomedical applications of fluorescent gold nanoclusters. Adv Colloid Interfac. 2017;242:1–16.

    Article  CAS  Google Scholar 

  14. Kailasa SK, Borse S, Koduru JR, Murthy Z. Biomolecules as promising ligands in the synthesis of metal nanoclusters: Sensing, bioimaging and catalytic applications. Trends Environ Anal. 2021;32:e00140.

    Article  CAS  Google Scholar 

  15. Chen L, Gharib M, Zeng Y, Roy S, Nandi CK, Chakraborty I. Advances in bovine serum albumin-protected gold nanoclusters: from understanding the formation mechanisms to biological applications. Mater Today Chem. 2023;29:101460.

    Article  CAS  Google Scholar 

  16. Shichibu Y, Negishi Y, Tsunoyama H, Kanehara M, Teranishi T, Tsukuda T. Extremely high stability of glutathionate-protected Au25 clusters against core etching. Small. 2007;3(5):835–9.

    Article  CAS  PubMed  Google Scholar 

  17. Deng H-H, Shi X-Q, Wang F-F, Peng H-P, Liu A-L, Xia X-H, et al. Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host–guest recognition. Chem Mater. 2017;29(3):1362–9.

    Article  CAS  Google Scholar 

  18. Zheng K, Setyawati MI, Leong DT, Xie J. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem Mater. 2018;30(8):2800–8.

    Article  CAS  Google Scholar 

  19. Pensa E, Azofra LM, Salvarezza RC, Carro P. Effect of ligands on the stability of gold nanoclusters. J Phys Chem Lett. 2022;13(28):6475–80.

    Article  CAS  PubMed  Google Scholar 

  20. Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131(3):888–9.

    Article  CAS  PubMed  Google Scholar 

  21. Srinivasulu YG, Yao Q, Goswami N, Xie J. Interfacial engineering of gold nanoclusters for biomedical applications. Mater Horiz. 2020;7(10):2596–618.

    Article  Google Scholar 

  22. Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY. Ultrasmall coinage metal nanoclusters as promising theranostic probes for biomedical applications. J Am Chem Soc. 2023;145(22):11879–98.

    Article  CAS  PubMed  Google Scholar 

  23. Ding C, Xu Y, Zhao Y, Zhong H, Luo X. Fabrication of BSA@AuNC-based nanostructures for cell fluoresce imaging and target drug delivery. ACS Appl Mater Interfaces. 2018;10(10):8947–54.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Wu M, Dai W, Chen M, Guo Z, Wang X, et al. High drug-loading gold nanoclusters for responsive glucose control in type 1 diabetes. J Nanobiotechnol. 2019;17(1):1–11.

    Article  Google Scholar 

  25. Li Y, Zheng H, Lu H, Duan M, Li C, Li M, et al. Noncanonical condensation of nucleic acid chains by hydrophobic gold nanocrystals. J Am Chem Soc Au. 2023;3(8):2206–15.

    CAS  Google Scholar 

  26. Farkhani SM, Dehghankelishadi P, Refaat A, Gopal DV, Cifuentes-Rius A, Voelcker NH. Tailoring gold nanocluster properties for biomedical applications: from sensing to bioimaging and theranostics. Prog Mater Sci. 2023;142:101229. https://doi.org/10.1016/j.pmatsci.2023.101229

  27. Zhang S, Zhang X, Su Z. Biomolecule conjugated metal nanoclusters: bio-inspiration strategies, targeted therapeutics, and diagnostics. J Mater Chem B. 2020;8(19):4176–94.

    Article  CAS  PubMed  Google Scholar 

  28. Cui H, Shao Z-S, Song Z, Wang Y-B, Wang H-S. Development of gold nanoclusters: from preparation to applications in the field of biomedicine. J Mater Chem C. 2020;8(41):14312–33.

    Article  CAS  Google Scholar 

  29. Hao D, Zhang X, Su R, Wang Y, Qi W. Biomolecule-protected gold nanoclusters: synthesis and biomedical applications. J Mater Chem B. 2023;11(23):5051–70.

    Article  CAS  PubMed  Google Scholar 

  30. Li W, Zhou X, Yan W, Wang R, Yang Z, Hu Y, et al. Lysozyme-encapsulated gold nanoclusters for ultrasensitive detection of folic acid and in vivo imaging. Talanta. 2023;251:123789.

    Article  CAS  PubMed  Google Scholar 

  31. Yu F, Xiang H, He S, Zhao G, Cao Z, Yang L, et al. Gold nanocluster-based ratiometric fluorescent probe for biosensing of Hg2+ ions in living organisms. Analyst. 2022;147(12):2773–8.

    Article  CAS  PubMed  Google Scholar 

  32. Xie Y, Liu Y, Yang J, Liu Y, Hu F, Zhu K, et al. Gold nanoclusters for targeting methicillin-resistant staphylococcus aureus in vivo. Angew Chem Int Edit. 2018;57(15):3958–62.

    Article  CAS  Google Scholar 

  33. Wang T, Xu Z, Wen M, Li N, Zhang L, Xue Y, et al. Multifunctional gold clusterzymes with distinct glucose depletion and macrophage reprogramming capability towards regulating the regeneration cascade. Chem Eng J. 2024;482:149068.

    Article  CAS  Google Scholar 

  34. Jiao T, Yan X, Balan L, Stepanov AL, Chen X, Hu MZ. Chemical functionalization, self-assembly, and applications of nanomaterials and nanocomposites. J Nanomater. 2014;2014:2–2.

    Article  Google Scholar 

  35. Dai Z, Tan Y, He K, Chen H, Liu J. Strict DNA valence control in ultrasmall thiolate-protected near-infrared-emitting gold nanoparticles. J Am Chem Soc. 2020;142(33):14023–7.

    Article  CAS  PubMed  Google Scholar 

  36. Yang L, Chen J, Huang T, Huang L, Sun Z, Jiang Y, et al. Red-emitting Au7 nanoclusters with fluorescence sensitivity to Fe2+ ions. J Mater Chem C. 2017;5(18):4448–54.

    Article  CAS  Google Scholar 

  37. Bain D, Maity S, Debnath T, Das AK, Patra A. Luminescent Au6 and Au8 nanoclusters from ligand induced etching of Au nanoparticles. Mater Res Express. 2019;6(12):124004.

    Article  CAS  Google Scholar 

  38. Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17.

    Article  PubMed  Google Scholar 

  39. Chang T-K, Cheng T-M, Chu H-L, Tan S-H, Kuo J-C, Hsu P-H, et al. Metabolic mechanism investigation of antibacterial active cysteine-conjugated gold nanoclusters in Escherichia coli. ACS Sustainable Chem Eng. 2019;7(18):15479–86.

    Article  CAS  Google Scholar 

  40. Jin R, Qian H, Wu Z, Zhu Y, Zhu M, Mohanty A, et al. Size focusing: a methodology for synthesizing atomically precise gold nanoclusters. J Phys Chem Lett. 2010;1(19):2903–10.

    Article  CAS  Google Scholar 

  41. Xu S, Yang H, Zhao K, Li J, Mei L, Xie Y, et al. Simple and rapid preparation of orange-yellow fluorescent gold nanoclusters using DL-homocysteine as a reducing/stabilizing reagent and their application in cancer cell imaging. Rsc Adv. 2015;5(15):11343–8.

    Article  CAS  Google Scholar 

  42. Abarghoei S, Fakhri N, Borghei YS, Hosseini M, Ganjali MR. A colorimetric paper sensor for citrate as biomarker for early stage detection of prostate cancer based on peroxidase-like activity of cysteine-capped gold nanoclusters. Spectrochim Acta A. 2019;210:251–9.

    Article  CAS  Google Scholar 

  43. Peng Y, Wang M, Wu X, Wang F, Liu L. Methionine-capped gold nanoclusters as a fluorescence-enhanced probe for cadmium (II) sensing. Sensors. 2018;18(2):658.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang X, Shi M, Zhou R, Chen X, Chen H. Blending of HAuCl4 and histidine in aqueous solution: a simple approach to the Au10 cluster. Nanoscale. 2011;3(6):2596–601.

    Article  CAS  PubMed  Google Scholar 

  45. Zheng S, Yin H, Li Y, Bi F, Gan F. One–step synthesis of L-tryptophan-stabilized dual-emission fluorescent gold nanoclusters and its application for Fe3+ sensing. Sensor Actuat B-Chem. 2017;242:469–75.

    Article  CAS  Google Scholar 

  46. Basu S, Paul A, Chattopadhyay A. Zinc mediated crystalline assembly of gold nanoclusters for expedient hydrogen storage and sensing. J Mater Chem A. 2016;4(4):1218–23.

    Article  CAS  Google Scholar 

  47. Xu Y, Yang X, Zhu S, Dou Y. Selectively fluorescent sensing of Cu2+ based on lysine-functionalized gold nanoclusters. Colloid Surface A. 2014;450:115–20.

    Article  CAS  Google Scholar 

  48. Fu W, Wang H, Chen Y, Ding J, Shan G. Fluorescence sensing analysis for rapid detection of serum glutathione based on degrading AuNCs@Lys-MnO2 fluorescence resonance energy transfer system. Microchem J. 2020;159:105556.

    Article  CAS  Google Scholar 

  49. Mu X, Qi L, Dong P, Qiao J, Hou J, Nie Z, et al. Facile one-pot synthesis of L-proline-stabilized fluorescent gold nanoclusters and its application as sensing probes for serum iron. Biosens Bioelectron. 2013;49:249–55.

    Article  CAS  PubMed  Google Scholar 

  50. Yang X, Luo Y, Zhuo Y, Feng Y, Zhu S. Novel synthesis of gold nanoclusters templated with L-tyrosine for selective analyzing tyrosinase. Anal Chim Acta. 2014;840:87–92.

    Article  CAS  PubMed  Google Scholar 

  51. Borsook H. Peptide bond formation. Adv Protein Chem. 1953;8:127–74.

    Article  CAS  PubMed  Google Scholar 

  52. Fabris L, Antonello S, Armelao L, Donkers RL, Polo F, Toniolo C, et al. Gold nanoclusters protected by conformationally constrained peptides. J Am Chem Soc. 2006;128(1):326–36.

    Article  CAS  PubMed  Google Scholar 

  53. Wu Z, Jin R. On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett. 2010;10(7):2568–73.

    Article  CAS  PubMed  Google Scholar 

  54. Radenković S, Antić M, Savić ND, Glišić BĐ. The nature of the Au–N bond in gold (III) complexes with aromatic nitrogen-containing heterocycles: The influence of Au (III) ions on the ligand aromaticity. New J Chem. 2017;41(21):12407–15.

    Article  Google Scholar 

  55. An D, Su J, Weber JK, Gao X, Zhou R, Li J. A peptide-coated gold nanocluster exhibits unique behavior in protein activity inhibition. J Am Chem Soc. 2015;137(26):8412–8.

    Article  CAS  PubMed  Google Scholar 

  56. Wu Z, Suhan J, Jin R. One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J Mater Chem. 2009;19(5):622–6.

    Article  CAS  Google Scholar 

  57. Luo Z, Yuan X, Yu Y, Zhang Q, Leong DT, Lee JY, et al. From aggregation-induced emission of Au (I)–thiolate complexes to ultrabright Au(0)@Au(I)–thiolate core–shell nanoclusters. J Am Chem Soc. 2012;134(40):16662–70.

    Article  CAS  PubMed  Google Scholar 

  58. Wu Z, Wang M, Yang J, Zheng X, Cai W, Meng G, et al. Well-defined nanoclusters as fluorescent nanosensors: a case study on Au25(SG)18. Small. 2012;8(13):2028–35.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao R-X, Liu A-Y, Wen Q-L, Wu B-C, Wang J, Hu Y-L, et al. Glutathione stabilized green-emission gold nanoclusters for selective detection of cobalt ion. Spectrochimica Acta A. 2021;254:119628.

    Article  CAS  Google Scholar 

  60. You J-G, Tseng W-L. Peptide-induced aggregation of glutathione-capped gold nanoclusters: a new strategy for designing aggregation-induced enhanced emission probes. Anal Chim Acta. 2019;1078:101–11.

    Article  CAS  PubMed  Google Scholar 

  61. Cao L, Chen W-Q, Zhou L-J, Wang Y-Y, Liu Y, Jiang F-L. Regulation of the enzymatic activities of lysozyme by the surface ligands of ultrasmall gold nanoclusters: the role of hydrophobic interactions. Langmuir. 2021;37(46):13787–97.

    Article  CAS  PubMed  Google Scholar 

  62. Pranantyo D, Liu P, Zhong W, Kang E-T, Chan-Park MB. Antimicrobial peptide-reduced gold nanoclusters with charge-reversal moieties for bacterial targeting and imaging. Biomacromol. 2019;20(8):2922–33.

    Article  CAS  Google Scholar 

  63. Wang Y, Cui Y, Zhao Y, Liu R, Sun Z, Li W, et al. Bifunctional peptides that precisely biomineralize Au clusters and specifically stain cell nuclei. Chem Commun. 2012;48(6):871–3.

    Article  CAS  Google Scholar 

  64. Song W, Wang Y, Liang R-P, Zhang L, Qiu J-D. Label-free fluorescence assay for protein kinase based on peptide biomineralized gold nanoclusters as signal sensing probe. Biosens Bioelectron. 2015;64:234–40.

    Article  CAS  PubMed  Google Scholar 

  65. Tao Y, Zhang Y, Ju E, Ren H, Ren J. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides. Nanoscale. 2015;7(29):12419–266.

    Article  CAS  PubMed  Google Scholar 

  66. Wang Y, Cui Y, Liu R, Gao F, Gao L, Gao X. Bio-inspired peptide-Au cluster applied for mercury (II) ions detection. Sci China Chem. 2015;58:819–24.

    Article  CAS  Google Scholar 

  67. Liu S, Jia Y, Xue J, Li Y, Wu Z, Ren X, et al. Bifunctional peptide-biomineralized gold nanoclusters as electrochemiluminescence probe for optimizing sensing interface. Sensor Actuat B-Chem. 2020;318:128278.

    Article  CAS  Google Scholar 

  68. Anfinsen CB. The formation and stabilization of protein structure. Biochem J. 1972;128(4):737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu Y, Sherwood J, Qin Y, Crowley D, Bonizzoni M, Bao Y. The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale. 2014;6(3):1515–24.

    Article  CAS  PubMed  Google Scholar 

  70. Xie J, Zheng Y, Ying JY. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem Commun. 2010;46(6):961–3.

    Article  CAS  Google Scholar 

  71. Zhang J, Zhang Z, Nie X, Zhang Z, Wu X, Chen C, et al. A label-free gold nanocluster fluorescent probe for protease activity monitoring. J Nanosci Nanotechno. 2014;14(6):4029–35.

    Article  CAS  Google Scholar 

  72. Xavier PL, Chaudhari K, Verma PK, Pal SK, Pradeep T. Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale. 2010;2(12):2769–76.

    Article  CAS  PubMed  Google Scholar 

  73. Li L, Lu Y, Xu X, Yang X, Chen L, Jiang C, et al. Catalytic-enhanced lactoferrin-functionalized Au-Bi2Se3 nanodots for Parkinson’s disease therapy via reactive oxygen attenuation and mitochondrial protection. Adv Healthc Mater. 2021;10(13):2100316.

    Article  CAS  Google Scholar 

  74. Shao C, Yuan B, Wang H, Zhou Q, Li Y, Guan Y, et al. Eggshell membrane as a multimodal solid state platform for generating fluorescent metal nanoclusters. J Mater Chem. 2011;21(9):2863–6.

    Article  CAS  Google Scholar 

  75. Zhang P, Lan J, Wang Y, Huang CZ. Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters. Biomaterials. 2015;36:26–32.

    Article  PubMed  Google Scholar 

  76. Li Z, Peng H, Liu J, Tian Y, Yang W, Yao J, et al. Plant protein-directed synthesis of luminescent gold nanocluster hybrids for tumor imaging. ACS Appl Mater Interfaces. 2018;10(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  77. Liu H, Gu T, Yu W, Xing Y, Zhou J. Observation of luminescent gold nanoclusters using one-step syntheses from wool keratin and silk fibroin effect. Eur Polym J. 2018;99:1–8.

    Article  CAS  Google Scholar 

  78. Shu T, Cheng X, Wang J, Lin X, Zhou Z, Su L, et al. Synthesis of luminescent gold nanoclusters embedded goose feathers for facile preparation of Au (I) complexes with aggregation-induced emission. ACS Sustainable Chem Eng. 2018;7(1):592–8.

    Article  Google Scholar 

  79. Cheng X, Shu T, Sun Y, Zhou X, An J, Dai Q, et al. “Gold inlaid with hair”: permanent fluorescent hair dyeing using fast protein-assisted biomineralization of gold nanoclusters. ACS Sustainable Chem Eng. 2021;10(1):305–13.

    Article  Google Scholar 

  80. Carnerero JM, Jimenez-Ruiz A, Castillo PM, Prado-Gotor R. Covalent and non-covalent DNA–gold-nanoparticle interactions: new avenues of research. ChemPhysChem. 2017;18(1):17–33.

    Article  CAS  PubMed  Google Scholar 

  81. Koo KM, Sina AA, Carrascosa LG, Shiddiky MJ, Trau M. DNA–bare gold affinity interactions: mechanism and applications in biosensing. Anal Methods. 2015;7(17):7042–54.

    Article  CAS  Google Scholar 

  82. Lopez A, Liu J. Light-activated metal-coordinated supramolecular complexes with charge-directed self-assembly. The J Phys Chem C. 2013;117(7):3653–61.

    Article  CAS  Google Scholar 

  83. Nakamura T, Zhao Y, Yamagata Y, Hua Y-J, Yang W. Watching DNA polymerase η make a phosphodiester bond. Nature. 2012;487(7406):196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. Trac-Trend Anal Chem. 2014;58:99–111.

    Article  CAS  Google Scholar 

  85. Hosseini M, Ahmadi E, Borghei Y-S, Ganjali MR. A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA–gold nanocluster. Methods Appl Fluores. 2017;5(1):015005.

    Article  Google Scholar 

  86. Wang M, Chen Y, Cai W, Feng H, Du T, Liu W, et al. In situ self-assembling Au-DNA complexes for targeted cancer bioimaging and inhibition. P Natl A Sci. 2020;117(1):308–16.

    Article  CAS  Google Scholar 

  87. Wang HB, Mao AL, Li YH, Gan T, Liu YM. A turn-on fluorescence strategy for biothiols determination by blocking Hg (II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters. Luminescence. 2020;35(8):1296–303.

    Article  CAS  PubMed  Google Scholar 

  88. Kryachko E, Remacle F. Complexes of DNA bases and gold clusters Au3 and Au4 involving nonconventional N− H…Au hydrogen bonding. Nano Lett. 2005;5(4):735–9.

    Article  CAS  PubMed  Google Scholar 

  89. Liu G, Shao Y, Ma K, Cui Q, Wu F, Xu S. Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bull. 2012;45:69–74.

    Article  Google Scholar 

  90. Liu G, Shao Y, Wu F, Xu S, Peng J, Liu L. DNA-hosted fluorescent gold nanoclusters: sequence-dependent formation. Nanotechnology. 2012;24(1):015503.

    Article  PubMed  Google Scholar 

  91. Lopez A, Liu J. DNA-templated fluorescent gold nanoclusters reduced by Good’s buffer: from blue-emitting seeds to red and near infrared emitters. Can J Chem. 2015;93(6):615–20.

    Article  CAS  Google Scholar 

  92. Wang Y, Wang X, Ma X, Chen Q, He H, Nau WM, et al. Coassembly of gold nanoclusters with nucleic acids: sensing, bioimaging, and gene transfection. Part Part Syst Char. 2019;36(10):1900281.

    Article  CAS  Google Scholar 

  93. Quan Z, Xue F, Li H, Chen Z, Wang L, Zhu H, et al. A bioinspired ratiometric fluorescence probe based on cellulose nanocrystal-stabilized gold nanoclusters for live-cell and zebrafish imaging of highly reactive oxygen species. Chem Eng J. 2022;431:133954.

    Article  CAS  Google Scholar 

  94. Duan Y, Duan R, Liu R, Guan M, Chen W, Ma J, et al. Chitosan-stabilized self-assembled fluorescent gold nanoclusters for cell imaging and biodistribution in vivo. ACS Biomater Sci Eng. 2018;4(3):1055–63.

    Article  CAS  PubMed  Google Scholar 

  95. Chandirasekar S, Chandrasekaran C, Muthukumarasamyvel T, Sudhandiran G, Rajendiran N. Biosurfactant templated quantum sized fluorescent gold nanoclusters for in vivo bioimaging in zebrafish embryos. Colloids Surf B Biointerfaces. 2016;143:472–80.

    Article  CAS  Google Scholar 

  96. Wang J-Q, He R-L, Liu W-D, Feng Q-Y, Zhang Y-E, Liu C-Y, et al. Integration of metal catalysis and organocatalysis in a metal nanocluster with anchored proline. J Am Chem Soc. 2023;145(22):12255–63.

    Article  CAS  PubMed  Google Scholar 

  97. Yuan Q, Wang Y, Zhao L, Liu R, Gao F, Gao L, et al. Peptide protected gold clusters: chemical synthesis and biomedical applications. Nanoscale. 2016;8(24):12095–104.

    Article  CAS  PubMed  Google Scholar 

  98. Zare I, Chevrier DM, Cifuentes-Rius A, Moradi N, Xianyu Y, Ghosh S, et al. Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications. Mater Today. 2023;66:159–93.

    Article  CAS  Google Scholar 

  99. Ding C, Tian Y. Gold nanocluster-based fluorescence biosensor for targeted imaging in cancer cells and ratiometric determination of intracellular pH. Biosens Bioelectron. 2015;65:183–90.

    Article  CAS  PubMed  Google Scholar 

  100. Hada A-M, Craciun A-M, Focsan M, Borlan R, Soritau O, Todea M, et al. Folic acid functionalized gold nanoclusters for enabling targeted fluorescence imaging of human ovarian cancer cells. Talanta. 2021;225:121960.

    Article  CAS  PubMed  Google Scholar 

  101. Retnakumari A, Setua S, Menon D, Ravindran P, Muhammed H, Pradeep T, et al. Molecular-receptor-specific, non-toxic, near-infrared-emitting Au cluster-protein nanoconjugates for targeted cancer imaging. Nanotechnology. 2009;21(5):055103.

    Article  PubMed  Google Scholar 

  102. Bhamore JR, Deshmukh B, Haran V, Jha S, Singhal RK, Lenka N, et al. One-step eco-friendly approach for the fabrication of synergistically engineered fluorescent copper nanoclusters: sensing of Hg2+ ion and cellular uptake and bioimaging properties. New J Chem. 2018;42(2):1510–20.

    Article  CAS  Google Scholar 

  103. Bertorelle F, Wegner KD, Perić Bakulić M, Fakhouri H, Comby‐Zerbino C, Sagar A, et al. Tailoring the NIR‐II photoluminescence of single thiolated Au25 nanoclusters by selective binding to proteins. Chem–A Eur J. 2022;28(39):e202200570.

  104. Zhang C, Gao X, Chen W, He M, Yu Y, Gao G, et al. Advances of gold nanoclusters for bioimaging. iScience. 2022;25(10):105022. https://doi.org/10.1016/j.isci.2022.105022

  105. Sun Y, Wu J, Wang C, Zhao Y, Lin Q. Tunable near-infrared fluorescent gold nanoclusters: temperature sensor and targeted bioimaging. New J Chem. 2017;41(13):5412–9.

    Article  CAS  Google Scholar 

  106. Liu H, Hong G, Luo Z, Chen J, Chang J, Gong M, et al. Atomic-precision gold clusters for NIR-II imaging. Adv Mater. 2019;31(46):1901015.

    Article  CAS  Google Scholar 

  107. Li D, Liu Q, Qi Q, Shi H, Hsu EC, Chen W, et al. Gold nanoclusters for NIR-II fluorescence imaging of bones. Small. 2020;16(43):2003851.

    Article  CAS  Google Scholar 

  108. Zhang C, Zhou Z, Qian Q, Gao G, Li C, Feng L, et al. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J Mater Chem B. 2013;1(38):5045–53.

    Article  CAS  PubMed  Google Scholar 

  109. Zheng B, Wu Q, Jiang Y, Hou M, Zhang P, Liu M, et al. One-pot synthesis of 68Ga-doped ultrasmall gold nanoclusters for PET/CT imaging of tumors. Mat Sci Eng C. 2021;128:112291.

    Article  CAS  Google Scholar 

  110. He K, Yu S, Wang X, Li D, Chen J, Zhong H, et al. The fabrication of transferrin-modified two-photon gold nanoclusters with near-infrared fluorescence and their application in bioimaging. Chem Commun. 2021;57(80):10391–4.

    Article  CAS  Google Scholar 

  111. Zhong W, Liang K, Liu W, Shang L. Ligand-protected nanocluster-mediated photoswitchable fluorescent nanoprobes towards dual-color cellular imaging. Chem Sci. 2023;14(33):8823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu X, He X, Wang K, Xie C, Zhou B, Qing Z. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale. 2010;2(10):2244–9.

    Article  CAS  PubMed  Google Scholar 

  113. Xu C, Wang Y, Zhang C, Jia Y, Luo Y, Gao X. AuGd integrated nanoprobes for optical/MRI/CT triple-modal in vivo tumor imaging. Nanoscale. 2017;9(13):4620–8.

    Article  CAS  PubMed  Google Scholar 

  114. Chen H, Li B, Ren X, Li S, Ma Y, Cui S, et al. Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy. Biomaterials. 2012;33(33):8461–76.

    Article  CAS  PubMed  Google Scholar 

  115. Wang Y, Xu C, Zhai J, Gao F, Liu R, Gao L, et al. Label-free Au cluster used for in vivo 2D and 3D computed tomography of murine kidneys. Anal Chem. 2015;87(1):343–5.

    Article  CAS  PubMed  Google Scholar 

  116. Yang Z, Zhao Y, Hao Y, Li X, Zvyagin AV, Whittaker AK, et al. Ultrasmall red fluorescent gold nanoclusters for highly biocompatible and long-time nerve imaging. Part Part Syst Char. 2021;38(5):2100001.

    Article  CAS  Google Scholar 

  117. Pang Z, Yan W, Yang J, Li Q, Guo Y, Zhou D, et al. Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis. ACS Nano. 2022;16(10):16019–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ni S, Liu Y, Tong S, Li S, Song X. Emerging NIR-II luminescent gold nanoclusters for in vivo bioimaging. J Anal Test. 2023;7(3):260–71.

    Article  Google Scholar 

  119. Wang W, Kong Y, Jiang J, Xie Q, Huang Y, Li G, et al. Engineering the protein corona structure on gold nanoclusters enables red-shifted emissions in the second near-infrared window for gastrointestinal imaging. Angew Chem Int Edit. 2020;59(50):22431–5.

    Article  CAS  Google Scholar 

  120. Yu X, Liu W, Deng X, Yan S, Su Z. Gold nanocluster embedded bovine serum albumin nanofibers-graphene hybrid membranes for the efficient detection and separation of mercury ion. Chem Eng J. 2018;335:176–84.

    Article  CAS  Google Scholar 

  121. Qing T, Bu H, He X, He D, Zhou B, Sun H, et al. A selective nanosensor for ultrafast detection of Cu2+ ions based on C5 DNA-templated gold nanoclusters and Fenton-like reaction. Anal Methods. 2017;9(44):6222–7.

    Article  CAS  Google Scholar 

  122. Shamsipur M, Babaee E, Gholivand M-B, Molaabasi F, Mousavi F, Barati A, et al. Bright green light-emitting gold nanoclusters confined in insulin as selective fluorescent switch probes for sensing and imaging of copper ions and glutathione. ACS Appl Nano Mater. 2023;6(7):5939–51.

    Article  CAS  Google Scholar 

  123. Tian Y, Fuller E, Klug S, Lee F, Su F, Zhang L, et al. A fluorescent colorimetric pH sensor and the influences of matrices on sensing performances. Sensor Actuat B-Chem. 2013;188:1–10.

    Article  CAS  Google Scholar 

  124. Xu H, Zhu H, Sun M, Yu H, Li H, Ma F, et al. Graphene oxide supported gold nanoclusters for the sensitive and selective detection of nitrite ions. Analyst. 2015;140(5):1678–85.

    Article  CAS  PubMed  Google Scholar 

  125. Liu J-M, Cui M-L, Jiang S-L, Wang X-X, Lin L-P, Jiao L, et al. BSA-protected gold nanoclusters as fluorescent sensor for selective and sensitive detection of pyrophosphate. Anal Methods. 2013;5(16):3942–7.

    Article  CAS  Google Scholar 

  126. Wang C-W, Chen Y-N, Wu B-Y, Lee C-K, Chen Y-C, Huang Y-H, et al. Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters. Anal Bioanal Chem. 2016;408:287–94.

    Article  CAS  PubMed  Google Scholar 

  127. Aswathy B, Sony G. Cu2+ modulated BSA–Au nanoclusters: a versatile fluorescence turn-on sensor for dopamine. Microchem J. 2014;116:151–6.

    Article  CAS  Google Scholar 

  128. Mathew MS, Baksi A, Pradeep T, Joseph K. Choline-induced selective fluorescence quenching of acetylcholinesterase conjugated Au@BSA clusters. Biosens Bioelectron. 2016;81:68–74.

    Article  CAS  PubMed  Google Scholar 

  129. Hemmateenejad B, Shakerizadeh-shirazi F, Samari F. BSA-modified gold nanoclusters for sensing of folic acid. Sensor Actuat B-Chem. 2014;199:42–6.

    Article  CAS  Google Scholar 

  130. Wang X, Wu P, Lv Y, Hou X. Ultrasensitive fluorescence detection of glutaraldehyde in water samples with bovine serum albumin-Au nanoclusters. Microchem J. 2011;99(2):327–31.

    Article  CAS  Google Scholar 

  131. Chen X, Baker GA. Cholesterol determination using protein-templated fluorescent gold nanocluster probes. Analyst. 2013;138(24):7299–302.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang X, Qiao J, Liu W, Qi L. Boosting the peroxidase-like activity of gold nanoclusters for the colorimetric detection of oxytetracycline in rat serum. Analyst. 2021;146(16):5061–6.

    Article  CAS  PubMed  Google Scholar 

  133. Tao Y, Ran X, Ren J, Qu X. Array-based sensing of proteins and bacteria by using multiple luminescent nanodots as fluorescent probes. Small. 2014;10(18):3667–71.

    Article  CAS  PubMed  Google Scholar 

  134. Zhao Y, Wang X, Mi J, Jiang Y, Wang C. Metal nanoclusters–based ratiometric fluorescent probes from design to sensing applications. Part Part Syst Char. 2019;36(11):1900298.

    Article  CAS  Google Scholar 

  135. Santhoshkumar S, Madhu M, Tseng W-B, Tseng W-L. Gold nanocluster-based fluorescent sensors for in vitro and in vivo ratiometric imaging of biomolecules. Phys Chem Chem Phys. 2023;25(33):21787–801.

    Article  CAS  PubMed  Google Scholar 

  136. Tsai C-L, Chen J-C, Wang W-J. Near-infrared absorption property of biological soft tissue constituents. J Med Biol Eng. 2001;21(1):7–14.

    Google Scholar 

  137. Ke C-Y, Wu Y-T, Tseng W-L. Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratiometric sensing of an enzyme–substrate system. Biosens Bioelectron. 2015;69:46–53.

    Article  CAS  PubMed  Google Scholar 

  138. Chandirasekar S, You J-G, Xue J-H, Tseng W-L. Synthesis of gold nanocluster-loaded lysozyme nanoparticles for label-free ratiometric fluorescent pH sensing: applications to enzyme–substrate systems and cellular imaging. J Mater Chem B. 2019;7(24):3876–83.

    Article  CAS  Google Scholar 

  139. Ran X, Wang Z, Pu F, Liu Z, Ren J, Qu X. Aggregation-induced emission-active Au nanoclusters for ratiometric sensing and bioimaging of highly reactive oxygen species. Chem Commun. 2019;55(100):15097–100.

    Article  CAS  Google Scholar 

  140. Li Q, Zhou X, Tan L-L, Shang L. MOF-based surface tailoring the near-infrared luminescence property of gold nanoclusters for ratiometric fluorescence sensing of acetylcholinesterase. Sensor Actuat B-Chem. 2023;385:133695.

    Article  CAS  Google Scholar 

  141. Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer. 2009;9(2):134–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–94.

    Article  CAS  PubMed  Google Scholar 

  143. Ghahremani F, Shahbazi-Gahrouei D, Kefayat A, Motaghi H, Mehrgardi MA, Javanmard SH. AS1411 aptamer conjugated gold nanoclusters as a targeted radiosensitizer for megavoltage radiation therapy of 4T1 breast cancer cells. RSC Adv. 2018;8(8):4249–58.

    Article  CAS  Google Scholar 

  144. Zhang XD, Luo Z, Chen J, Shen X, Song S, Sun Y, et al. Ultrasmall Au10−12(SG)10–12 nanomolecules for high tumor specificity and cancer radiotherapy. Adv Mater. 2014;26(26):4565–8.

    Article  CAS  PubMed  Google Scholar 

  145. Zhang X, Chen X, Jiang Y-W, Ma N, Xia L-Y, Cheng X, et al. Glutathione-depleting gold nanoclusters for enhanced cancer radiotherapy through synergistic external and internal regulations. ACS Appl Mater Interfaces. 2018;10(13):10601–6.

    Article  CAS  PubMed  Google Scholar 

  146. Fang X, Wang Y, Ma X, Li Y, Zhang Z, Xiao Z, et al. Mitochondria-targeting Au nanoclusters enhance radiosensitivity of cancer cells. J Mater Chem B. 2017;5(22):4190–7.

    Article  CAS  PubMed  Google Scholar 

  147. Luo D, Wang X, Zeng S, Ramamurthy G, Burda C, Basilion JP. Targeted gold nanocluster-enhanced radiotherapy of prostate cancer. Small. 2019;15(34):1900968.

    Article  Google Scholar 

  148. Felsher DW. Cancer revoked: oncogenes as therapeutic targets. Nat Rev Cancer. 2003;3(5):375–9.

    Article  CAS  PubMed  Google Scholar 

  149. Chen Q, Chen J, Yang Z, Zhang L, Dong Z, Liu Z. NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters. Nano Res. 2018;11:5657–69.

    Article  CAS  Google Scholar 

  150. Geng T, Zhao L, Wu D, Zhang H, Zhao X, Jiao M, et al. Bovine serum albumin-encapsulated ultrasmall gold nanoclusters for photodynamic therapy of tumors. ACS Appl Nano Mater. 2021;4(12):13818–25.

    Article  CAS  Google Scholar 

  151. Dan Q, Yuan Z, Zheng S, Ma H, Luo W, Zhang L, et al. Gold nanoclusters-based NIR-II photosensitizers with catalase-like activity for boosted photodynamic therapy. Pharmaceutics. 2022;14(8):1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Hu J-J, Cheng Y-J, Zhang X-Z. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale. 2018;10(48):22657–72.

    Article  CAS  PubMed  Google Scholar 

  153. Gu W, Zhang Q, Zhang T, Li Y, Xiang J, Peng R, et al. Hybrid polymeric nano-capsules loaded with gold nanoclusters and indocyanine green for dual-modal imaging and photothermal therapy. J Mater Chem B. 2016;4(5):910–9.

    Article  CAS  PubMed  Google Scholar 

  154. Zhao P, Liu S, Wang L, Liu G, Cheng Y, Lin M, et al. Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance. Carbohydr Polym. 2020;241:116344.

    Article  CAS  PubMed  Google Scholar 

  155. Li H, Wang P, Deng Y, Zeng M, Tang Y, Zhu W-H, et al. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials. 2017;139:30–8.

    Article  CAS  PubMed  Google Scholar 

  156. Liu P, Yang W, Shi L, Zhang H, Xu Y, Wang P, et al. Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation. J Mater Chem B. 2019;7(44):6924–33.

    Article  CAS  PubMed  Google Scholar 

  157. Yang Y, Wang S, Wang C, Tian C, Shen Y, Zhu M. Engineered targeted hyaluronic acid–glutathione-stabilized gold nanoclusters/graphene oxide–5-fluorouracil as a smart theranostic platform for stimulus-controlled fluorescence imaging-assisted synergetic chemo/phototherapy. Chem Asian J. 2019;14(9):1418–23.

    Article  CAS  PubMed  Google Scholar 

  158. Xie Y, Zheng W, Jiang X. Near-infrared light-activated phototherapy by gold nanoclusters for dispersing biofilms. ACS Appl Mater Interfaces. 2020;12(8):9041–9.

    Article  CAS  PubMed  Google Scholar 

  159. Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904–10.

    Article  CAS  PubMed  Google Scholar 

  160. Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbio. 2004;2(10):820–32.

    Article  CAS  Google Scholar 

  161. Li Y, Qu S, Xue Y, Zhang L, Shang L. Cationic antibacterial metal nanoclusters with traceable capability for fluorescent imaging the nano—bio interactions. Nano Res. 2023;16(1):999–1008.

    Article  CAS  Google Scholar 

  162. Tao Y, Lin Y, Huang Z, Ren J, Qu X. Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv Mater. 2013;25(18):2594–9.

    Article  CAS  PubMed  Google Scholar 

  163. Rebilly J-N, Colasson B, Bistri O, Over D, Reinaud O. Biomimetic cavity-based metal complexes. Chem Soc Rev. 2015;44(2):467–89.

    Article  CAS  PubMed  Google Scholar 

  164. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–76.

    Article  CAS  PubMed  Google Scholar 

  165. Wang Z, Shao Y, Zhu Z, Wang J, Gao X, Xie J, et al. Novel gold nanozyme regulation strategies facilitate analytes detection. Coord Chem Rev. 2023;495:215369.

    Article  CAS  Google Scholar 

  166. Wang X-X, Wu Q, Shan Z, Huang Q-M. BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens Bioelectron. 2011;26(8):3614–9.

    Article  CAS  PubMed  Google Scholar 

  167. Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–93.

    Article  CAS  PubMed  Google Scholar 

  168. Hu D, Sheng Z, Fang S, Wang Y, Gao D, Zhang P, et al. Folate receptor-targeting gold nanoclusters as fluorescence enzyme mimetic nanoprobes for tumor molecular colocalization diagnosis. Theranostics. 2014;4(2):142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tao Y, Li M, Kim B, Auguste DT. Incorporating gold nanoclusters and target-directed liposomes as a synergistic amplified colorimetric sensor for HER2-positive breast cancer cell detection. Theranostics. 2017;7(4):899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang G-L, Jin L-Y, Dong Y-M, Wu X-M, Li Z-J. Intrinsic enzyme mimicking activity of gold nanoclusters upon visible light triggering and its application for colorimetric trypsin detection. Biosens Bioelectron. 2015;64:523–9.

    Article  CAS  PubMed  Google Scholar 

  171. Liang M, Yan X. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190–200.

    Article  CAS  PubMed  Google Scholar 

  172. Shen X, Wang Z, Gao XJ, Gao X. Reaction mechanisms and kinetics of nanozymes: insights from theory and computation. Adv Mater. 2024;36(10):2211151. https://doi.org/10.1002/adma.202211151

  173. Shen X, Liu W, Gao X, Lu Z, Wu X, Gao X. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J Am Chem Soc. 2015;137(50):15882–91.

    Article  CAS  PubMed  Google Scholar 

  174. Wang Z, Wu J, Zheng J-J, Shen X, Yan L, Wei H, et al. Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat Commun. 2021;12(1):6866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mi W, Tang S, Guo S, Li H, Shao N. In situ synthesis of red fluorescent gold nanoclusters with enzyme-like activity for oxidative stress amplification in chemodynamic therapy. Chin Chem Lett. 2022;33(3):1331–6.

    Article  CAS  Google Scholar 

  176. Deshmukh AR, Aloui H, Kim BS. Novel biogenic gold nanoparticles catalyzing multienzyme cascade reaction: Glucose oxidase and peroxidase mimicking activity. Chem Eng J. 2021;421:127859.

    Article  CAS  Google Scholar 

  177. Xu D, Wu L, Yao H, Zhao L. Catalase-like nanozymes: classification, catalytic mechanisms, and their applications. Small. 2022;18(37):2203400.

    Article  CAS  Google Scholar 

  178. Liu CP, Wu TH, Lin YL, Liu CY, Wang S, Lin SY. Tailoring enzyme-like activities of gold nanoclusters by polymeric tertiary amines for protecting neurons against oxidative stress. Small. 2016;12(30):4127–35.

    Article  CAS  PubMed  Google Scholar 

  179. Gao L, Liu M, Ma G, Wang Y, Zhao L, Yuan Q, et al. Peptide-conjugated gold nanoprobe: intrinsic nanozyme-linked immunsorbant assay of integrin expression level on cell membrane. ACS Nano. 2015;9(11):10979–90.

    Article  CAS  PubMed  Google Scholar 

  180. Lin Y, Ren J, Qu X. Nano-gold as artificial enzymes: hidden talents. Adv Mater. 2014;26(25):4200–17.

    Article  CAS  PubMed  Google Scholar 

  181. Mikolajczak DJ, Koksch B. Peptide-gold nanoparticle conjugates as sequential cascade catalysts. ChemCatChem. 2018;10(19):4324–8.

    Article  CAS  Google Scholar 

  182. Zhang Y, Sun S, Liu H, Ren Q, Hao W, Xin Q, et al. Catalytically active gold clusters with atomic precision for noninvasive early intervention of neurotrauma. J Nanobiotechnol. 2021;19:1–13.

    Article  Google Scholar 

  183. Xu Z, Wang T, Li Y, Wen M, Liang K, Ruan C, et al. Nanozyme-engineered bioglass through supercharged interface for enhanced anti-infection and fibroblast regulation. Adv Funct Mater. 2023;33(2):2209438.

    Article  CAS  Google Scholar 

  184. Shang L, Xu J, Nienhaus GU. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today. 2019;28:100767.

    Article  Google Scholar 

  185. Goswami N, Yao Q, Luo Z, Li J, Chen T, Xie J. Luminescent metal nanoclusters with aggregation-induced emission. J Phys Chem Lett. 2016;7(6):962–75.

    Article  CAS  PubMed  Google Scholar 

  186. Aires A, Sousaraei A, Moller M, Cabanillas-Gonzalez J, Cortajarena AL. Boosting the photoluminescent properties of protein-stabilized gold nanoclusters through protein engineering. Nano Lett. 2021;21(21):9347–53.

    Article  CAS  PubMed  Google Scholar 

  187. Deng H, Huang K, Xiu L, Sun W, Yao Q, Fang X, et al. Bis-Schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level. Nat Commun. 2022;13(1):3381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was funded by the National Natural Science Foundation of China (grant nos. 22274100 and 2223000319).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.Q. and T.S.; methodology, J.M. and L.X.; software, Y.S. and Y.L.; validation, Y.L., Y.X. and L.X.; formal analysis, F.A.; investigation, J.Q. and Y.X.; resources, J.Q.; writing-original draft preparation, J.Q. and Y.X.; writing-review and editing, F.A., Y.X. and T.S.; supervision, T.S. and X.Z.; project administration, T.S; funding acquisition, T.S. and X.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yelan Xiao or Tong Shu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Luminescent Nanomaterials for Biosensing and Bioimaging with guest editors Li Shang, Chih-Ching Huang, and Xavier Le Guével.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Ahmad, F., Ma, J. et al. From synthesis to applications of biomolecule-protected luminescent gold nanoclusters. Anal Bioanal Chem (2024). https://doi.org/10.1007/s00216-024-05303-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00216-024-05303-y

Keywords

Navigation