Skip to main content
Log in

Polarized upconversion luminescence from a single LiLuF4:Yb3+/Er3+ microcrystal for orientation tracking

LiLuF4:Yb3+/Er3+单颗粒微米晶的偏振上转换发光和 取向示踪应用

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Polarized upconversion luminescence (UCL) of lanthanide-doped micro/nano-crystals has shown great promise in single-particle tracking and super-resolution bioimaging. However, because of the spectral line broadening and multiple sites of lanthanide in upconversion particles (UCPs), the crystal-field (CF) polarization components of UCL are usually undistinguishable. Herein, we report the linearly polarized UCL in LiLuF4:Yb3+/Er3+ single microcrystals with resolvable CF transition lines and a polarization degree up to 0.82. The CF levels and CF transition lines of Er3+, as well as their emission polarization anisotropy, are unraveled for the first time through low-temperature and high-resolution photoluminescence (PL) and UCL spectroscopies. By taking advantage of the well-resolved and highly-polarized CF transition lines of Er3+, we demonstrate the application of LiLuF4:Yb3+/Er3+ single microcrystals as anisotropic UCL probes for orientation tracking. These findings provide fundamental insights into the polarization anisotropy of UCL in lanthanide-doped single particles, thus laying a foundation for the future design of anisotropic luminescent probes towards versatile applications.

摘要

稀土掺杂微/纳晶体的偏振上转换发光在单颗粒示踪和高分辨成 像等领域具有广泛的应用前景. 然而, 由于稀土上转换颗粒的多位置发 光和谱线展宽, 其上转换发光的晶体场偏振组分往往难以区分. 本文报 道了LiLuF4:Yb3+/Er3+单颗粒微米晶的线偏振上转换发光, 其晶体场跃 迁谱线容易分辨, 偏振度达到0.82. 通过低温高分辨荧光光谱和上转换 光谱测试, 我们揭示了LiLuF4:Yb3+/Er3+微米晶Er3+的晶体场能级、晶体 场跃迁谱线及其上转换发光的偏振各向异性. 利用Er3+易分辨且高度偏 振的晶体场跃迁谱线, 我们还证明了LiLuF4:Yb3+/Er3+单颗粒微米晶作 为各向异性上转换荧光探针在取向示踪方面的潜在应用. 这些发现为 稀土掺杂单颗粒的上转换偏振各向异性研究提供了理论基础, 也为各 向异性荧光探针的设计和多功能用途的开发提供了新思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou J, Chen G, Wu E, et al. Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped β-NaYF4 single nanorod. Nano Lett, 2013, 13: 2241–2246

    Article  CAS  Google Scholar 

  2. Rodríguez-Sevilla P, Zhang Y, de Sousa N, et al. Optical torques on upconverting particles for intracellular microrheometry. Nano Lett, 2016, 16: 8005–8014

    Article  Google Scholar 

  3. Shi S, Sun LD, Xue YX, et al. Scalable direct writing of lanthanide-doped KMnF3 perovskite nanowires into aligned arrays with polarized up-conversion emission. Nano Lett, 2018, 18: 2964–2969

    Article  CAS  Google Scholar 

  4. Yao W, Tian Q, Tian B, et al. Dual upconversion nanophotoswitch for security encoding. Sci China Mater, 2019, 62: 368–378

    Article  CAS  Google Scholar 

  5. He H, Liu J, Li K, et al. Linearly polarized emission from shear-induced nematic phase upconversion nanorods. Nano Lett, 2020, 20: 4204–4210

    Article  CAS  Google Scholar 

  6. Shao B, Wan S, Yang C, et al. Engineered anisotropic fluids of rare-earth nanomaterials. Angew Chem Int Ed, 2020, 59: 18213–18217

    Article  CAS  Google Scholar 

  7. Zhanghao K, Liu W, Li M, et al. High-dimensional super-resolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes. Nat Commun, 2020, 11: 5890

    Article  CAS  Google Scholar 

  8. Zhou J, Chizhik AI, Chu S, et al. Single-particle spectroscopy for functional nanomaterials. Nature, 2020, 579: 41–50

    Article  CAS  Google Scholar 

  9. Yi Z, Luo Z, Qin X, et al. Lanthanide-activated nanoparticles: A toolbox for bioimaging, therapeutics, and neuromodulation. Acc Chem Res, 2020, 53: 2692–2704

    Article  CAS  Google Scholar 

  10. Xu J, Zhou J, Chen Y, et al. Lanthanide-activated nanoconstructs for optical multiplexing. Coord Chem Rev, 2020, 415: 213328

    Article  CAS  Google Scholar 

  11. Wang J, Gudiksen MS, Duan X, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293: 1455–1457

    Article  CAS  Google Scholar 

  12. Hu J. Linearly polarized emission from colloidal semiconductor quantum rods. Science, 2001, 292: 2060–2063

    Article  CAS  Google Scholar 

  13. Ming T, Zhao L, Yang Z, et al. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods. Nano Lett, 2009, 9: 3896–3903

    Article  CAS  Google Scholar 

  14. Ouyang H, Zhang C, Liu Q, et al. Polarization-tunable nonlinear absorption patterns from saturated absorption to reverse saturated absorption in anisotropic GeS flake and an application of all-optical switching. Sci China Mater, 2020, 63: 1489–1502

    Article  CAS  Google Scholar 

  15. Chen P, Song M, Wu E, et al. Polarization modulated upconversion luminescence: Single particle vs. few-particle aggregates. Nanoscale, 2015, 7: 6462–6466

    Article  Google Scholar 

  16. Kim J, Michelin S, Hilbers M, et al. Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography. Nat Nanotech, 2017, 12: 914–919

    Article  CAS  Google Scholar 

  17. He J, Zheng W, Ligmajer F, et al. Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+,Er3+ hybrid core-shell-satellite nanostructures. Light Sci Appl, 2017, 6: e16217

    Article  CAS  Google Scholar 

  18. Liu H, Huang K, Valiev RR, et al. Photon upconversion kinetic nanosystems and their optical response. Laser Photonics Rev, 2018, 12: 1700144

    Article  Google Scholar 

  19. Yang D, Peng Z, Zhan Q, et al. Anisotropic excitation polarization response from a single white light-emitting β-NaYF4:Yb3+,Pr3+ microcrystal. Small, 2019, 15: 1904298

    Article  CAS  Google Scholar 

  20. Lüthi SR, Güdel HU, Hehlen MP, et al. Electronic energy-level structure, correlation crystal-field effects, and f-f transition intensities of Er3+ in Cs3Lu2Cl9. Phys Rev B, 1998, 57: 15229–15241

    Article  Google Scholar 

  21. Dong H, Sun LD, Wang YF, et al. Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxReF3+x nanocrystals. J Am Chem Soc, 2015, 137: 6569–6576

    Article  CAS  Google Scholar 

  22. Sun LN, Wei RY, Feng J, et al. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord Chem Rev, 2018, 364: 10–32

    Article  CAS  Google Scholar 

  23. Bastos ARN, Brites CDS, Rojas-Gutierrez PA, et al. Thermal properties of lipid bilayers determined using upconversion nanothermometry. Adv Funct Mater, 2019, 29: 1905474

    Article  CAS  Google Scholar 

  24. Sun T, Li Y, Ho WL, et al. Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion. Nat Commun, 2019, 10: 1811

    Article  Google Scholar 

  25. Han S, Deng R, Gu Q, et al. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright. Nature, 2020, 587: 594–599

    Article  CAS  Google Scholar 

  26. Li H, Tan M, Wang X, et al. Temporal multiplexed in vivo upconversion imaging. J Am Chem Soc, 2020, 142: 2023–2030

    Article  CAS  Google Scholar 

  27. Baek D, Lee TK, Jeon I, et al. Multi-color luminescence transition of upconversion nanocrystals via crystal phase control with SiO2 for high temperature thermal labels. Adv Sci, 2020, 7: 2000104

    Article  CAS  Google Scholar 

  28. Pan E, Bai G, Ma B, et al. Reversible enhanced upconversion luminescence by thermal and electric fields in lanthanide ions doped ferroelectric nanocomposites. Sci China Mater, 2020, 63: 110–121

    Article  CAS  Google Scholar 

  29. Bai G, Lyu Y, Wu Z, et al. Lanthanide near-infrared emission and energy transfer in layered WS2/MoS2 heterostructure. Sci China Mater, 2020, 63: 575–581

    Article  CAS  Google Scholar 

  30. Gai S, Li C, Yang P, et al. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev, 2014, 114: 2343–2389

    Article  CAS  Google Scholar 

  31. Brecher C, Samelson H, Lempicki A, et al. Polarized spectra and crystalfield parameters of Eu3+ in YVO4. Phys Rev, 1967, 155: 178–187

    Article  CAS  Google Scholar 

  32. Görller-Walrand C, Binnemans K. Rationalization of Crystal-field Parametrization. Handbook Phys Chemis Rare Earth, 1996, 23: 121–283

    Article  Google Scholar 

  33. Chaudan E, Kim J, Tusseau-Nenez S, et al. Polarized luminescence of anisotropic LaPO4:Eu nanocrystal polymorphs. J Am Chem Soc, 2018, 140: 9512–9517

    Article  CAS  Google Scholar 

  34. Zhou B, Yan L, Huang J, et al. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice. Nat Photonics, 2020, 14: 760–766

    Article  CAS  Google Scholar 

  35. Zheng W, Huang P, Tu D, et al. Lanthanide-doped upconversion nanobioprobes: Electronic structures, optical properties, and biodetection. Chem Soc Rev, 2015, 44: 1379–1415

    Article  CAS  Google Scholar 

  36. Luo W, Liu Y, Chen X. Lanthanide-doped semiconductor nanocrystals: Electronic structures and optical properties. Sci China Mater, 2015, 58: 819–850

    Article  CAS  Google Scholar 

  37. Tanner PA, Zhou L, Duan C, et al. Misconceptions in electronic energy transfer: Bridging the gap between chemistry and physics. Chem Soc Rev, 2018, 47: 5234–5265

    Article  CAS  Google Scholar 

  38. Fischer S, Siefe C, Swearer DF, et al. Bright infrared-to-ultraviolet/visible upconversion in small alkaline earth-based nanoparticles with biocompatible CaF2 shells. Angew Chem Int Ed, 2020, 59: 21603–21612

    Article  CAS  Google Scholar 

  39. Zhao CC, Hang Y, Zhang LH, et al. Crystal growth, spectroscopic characterization, and continuous wave laser operation of Nd3+-doped LiLuF4 crystal. Laser Phys Lett, 2011, 8: 263–268

    Article  CAS  Google Scholar 

  40. Zhang P, Wan Y, Yin J, et al. Spectroscopic, thermal and laser characteristics of Nd:LiLuF4 for 1314 nm laser. Laser Phys Lett, 2014, 11: 115803

    Article  Google Scholar 

  41. Cheng T, Marin R, Skripka A, et al. Small and bright lithium-based upconverting nanoparticles. J Am Chem Soc, 2018, 140: 12890–12899

    Article  CAS  Google Scholar 

  42. Carl F, Birk L, Grauel B, et al. LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals. Nano Res, 2021, 14: 797–806

    Article  CAS  Google Scholar 

  43. Huang P, Zheng W, Zhou S, et al. Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew Chem Int Ed, 2014, 53: 1252–1257

    Article  CAS  Google Scholar 

  44. Zhai X, Lei P, Zhang P, et al. Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes. Biomaterials, 2015, 65: 115–123

    Article  CAS  Google Scholar 

  45. Huang P, Zheng W, Tu D, et al. Unraveling the electronic structures of neodymium in LiLuF4 nanocrystals for ratiometric temperature sensing. Adv Sci, 2019, 6: 1802282

    Article  Google Scholar 

  46. Gao W, Wang R, Han Q, et al. Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle. J Phys Chem C, 2015, 119: 2349–2355

    Article  CAS  Google Scholar 

  47. Chen X, Ma E, Liu G. Energy levels and optical spectroscopy of Er3+ in Gd2O3 nanocrystals. J Phys Chem C, 2007, 111: 10404–10411

    Article  CAS  Google Scholar 

  48. Liao J, Jin D, Chen C, et al. Helix shape power-dependent properties of single upconversion nanoparticles. J Phys Chem Lett, 2020, 11: 2883–2890

    Article  CAS  Google Scholar 

  49. Ellens A, Andres H, Meijerink A, et al. Spectral-line-broadening study of the trivalent lanthanide-ion series. I. Line broadening as a probe of the electron-phonon coupling strength. Phys Rev B, 1997, 55: 173–179

    Article  CAS  Google Scholar 

  50. Tanner PA. Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. Chem Soc Rev, 2013, 42: 5090–5101

    Article  CAS  Google Scholar 

  51. da Gama AAS, de SÁ GF, Porcher P, et al. Energy levels calculation for Er3+:LiYF4. J Phys Chem Solids, 1981, 42: 701–704

    Article  CAS  Google Scholar 

  52. Chen XY, Luo ZD. Group-chain scheme analysis of the energy levels and magnetic properties of Er3+ in the LiYF4 crystal. J Phys-Condens Matter, 1996, 8: 2571–2583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS, XDB20000000), the National Natural Science Foundation of China (U1805252, 21875250, 11774345, 12074379, 21771185, 12074380, and 21975257), the Youth Innovation Promotion Association of the CAS (2020305), and the Natural Science Foundation of Fujian Province (2020I0037).

Author information

Authors and Affiliations

Authors

Contributions

Wei S, Huang P and Chen X conceived the projects, wrote the paper and were primarily responsible for the experiments. Wei S, Shang X and Huang P carried out the polarized UCL measurements and analyses. Wei S, Huang P and Zheng W carried out the low-temperature PL and UCL measurements. Huang P, Zheng W, Ma E, Tu D and Chen X analyzed the crystal-field levels and polarization directions. Xu J and Zhang M synthesized the microcrystals and measured the room-temperature PL and UCL spectra. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Ping Huang  (黄萍) or Xueyuan Chen  (陈学元).

Additional information

Shouquan Wei earned her BSc from Zhengzhou University (2018). She is currently a master student in materials engineering at Fuzhou University. She joined Prof. Xueyuan Chen’s group at Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS) in September 2018. Her research interest focuses on the controlled synthesis and optical spectroscopy of lanthanide-doped luminescent materials.

Ping Huang was born in Hebei province of China. She earned her BSc from Hebei University (2008) and PhD in materials physics and chemistry from FJIRSM, CAS (2014). She joined Prof. Xueyuan Chen’s group as a research assistant professor in 2014 and was promoted to a research associate professor in 2016. Her research interest focuses on the chemical synthesis, optical properties and bioapplication of lanthanide-doped luminescent nanomaterials.

Xueyuan Chen is Editor-in-Chief of Journal of Luminescence. He earned his BSc from the University of Science and Technology of China (1993) and his PhD degree from FJIRSM, CAS (1998). From 2001 to 2005, he was a postdoctoral research associate at the Chemistry Division of Argonne National Laboratory, U.S. Department of Energy, where he studied the photophysics and photochemistry of heavy elements. In 2005, he joined the faculty at FJIRSM, where he is currently a professor and group leader in materials chemistry and physics. His research focuses on the electronic structures, optical properties and applications of inorganic luminescent materials, such as lanthanide (rare-earth) nano-bioprobes and LED phosphors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Shang, X., Huang, P. et al. Polarized upconversion luminescence from a single LiLuF4:Yb3+/Er3+ microcrystal for orientation tracking. Sci. China Mater. 65, 220–228 (2022). https://doi.org/10.1007/s40843-021-1713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1713-x

Keywords

Navigation