Skip to main content
Log in

Asymmetric interfaces and high-TC ferromagnetic phase in La0.67Ca0.33MnO3/SrRuO3 superlattices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Interfacial magnetism in functional oxide heterostructures not only exhibits intriguing physical phenomena but also implies great potential for device applications. In these systems, interfacial structural and electronic reconstructions are essential for improving the stability and tunability of the magnetic properties. In this work, we constructed ultra-thin La0.67Ca0.33MnO3 (LCMO) and SrRuO3 (SRO) layers into superlattices, which exhibited a robust ferromagnetic phase. The high Curie temperature (TC) reaches 291 K, more than 30 K higher than that of bulk LCMO. We found that the LCMO/SRO superlattices consisted of atomically-sharp and asymmetric heterointerfaces. Such a unique interface structure can trigger a sizable charge transfer as well as a ferroelectric-like polar distortion. These two interfacial effects cooperatively stabilized the high-TC ferromagnetic phase. Our results could pave a promising approach towards effective control of interfacial magnetism and new designs of oxide-based spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reiner, J. W.; Walker, F. J.; Ahn, C. H. Atomically engineered oxide interfaces. Science 2009, 323, 1018–1019.

    Article  CAS  Google Scholar 

  2. Yu, P.; Chu, Y. H.; Ramesh, R. Oxide interfaces: Pathways to novel phenomena. Mater. Today 2012, 15, 320–327.

    Article  CAS  Google Scholar 

  3. Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater. 2012, 11, 103–113.

    Article  CAS  Google Scholar 

  4. Chen, S. Q.; Yuan, S.; Hou, Z. P.; Tang, Y. L.; Zhang, J. P.; Wang, T.; Li, K.; Zhao, W. W.; Liu, X. J.; Chen, L. et al. Recent progress on topological structures in ferroic thin films and heterostructures. Adv. Mater. 2021, 33, 2000857.

    Article  CAS  Google Scholar 

  5. Hong, S. S.; Gu, M. Q.; Verma, M.; Harbola, V.; Wang, B. Y.; Lu, D.; Vailionis, A.; Hikita, Y.; Pentcheva, R.; Rondinelli, J. M. et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science 2020, 368, 71–76.

    Article  CAS  Google Scholar 

  6. Liu, L.; Qin, Q.; Lin, W. N.; Li, C. J.; Xie, Q. D.; He, S. K.; Shu, X. Y.; Zhou, C. H.; Lim, Z.; Yu, J. H. et al. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. 2019, 14, 939–944.

    Article  CAS  Google Scholar 

  7. Yi, D.; Wang, Y. J.; Erve, O. M. J. V.; Xu, L. B.; Yuan, H. T.; Veit, M. J.; Balakrishnan, P. P.; Choi, Y.; N’Diaye, A. T.; Shafer, P. et al. Emergent electric field control of phase transformation in oxide superlattices. Nat. Commun. 2020, 11, 902.

    Article  CAS  Google Scholar 

  8. Zhang, J. D.; Tan, X. L.; Liu, M. K.; Teitelbaum, S. W.; Post, K. W.; Jin, F.; Nelson, K. A.; Basov, D. N.; Wu, W. B.; Averitt, R. D. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 2016, 15, 956–960.

    Article  CAS  Google Scholar 

  9. Hellman, F.; Hoffmann, A.; Tserkovnyak, Y.; Beach, G. S. D.; Fullerton, E. E.; Leighton, C.; MacDonald, A. H.; Ralph, D. C.; Arena, D. A.; Dürr, H. A. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 2017, 89, 025006.

    Article  Google Scholar 

  10. Ngai, J. H.; Walker, F. J.; Ahn, C. H. Correlated oxide physics and electronics. Annu. Rev. Mater. Sci. 2014, 44, 1–17.

    Article  CAS  Google Scholar 

  11. Bibes, M.; Villegas, J. E.; Barthélémy, A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 2011, 60, 5–84.

    Article  CAS  Google Scholar 

  12. Huijben, M.; Martin, L. W.; Chu, Y. H.; Holcomb, M. B.; Yu, P.; Rijnders, G.; Blank, D. H. A.; Ramesh, R. Critical thickness and orbital ordering in ultrathin La0.7Sr0.3MnO3 films. Phys. Rev. B 2008, 78, 094413.

    Article  CAS  Google Scholar 

  13. Koohfar, S.; Georgescu, A. B.; Penn, A. N.; LeBeau, J. M.; Arenholz, E.; Kumah, D. P. Confinement of magnetism in atomically thin La0.7Sr0.3CrO3/La0.7Sr0.3MnO3 heterostructures. npj Quantum Mater. 2019, 4, 25.

    Article  Google Scholar 

  14. Cao, L.; Petracic, O.; Zakalek, P.; Weber, A.; Rücker, U.; Schubert, J.; Koutsioubas, A.; Mattauch, S.; Brückel, T. Reversible control of physical properties via an oxygen-vacancy-driven topotactic transition in epitaxial La0.7Sr0.3MnO3−δ thin films. Adv. Mater. 2019, 31, 1806183.

    Article  CAS  Google Scholar 

  15. Lee, H. G.; Wang, L. F.; Si, L.; He, X. Y.; Porter, D. G.; Kim, J. R.; Ko, E. K.; Kim, J.; Park, S. M.; Kim, B. et al. Atomic-scale metal-insulator transition in SrRuO3 ultrathin films triggered by surface termination conversion. Adv. Mater. 2020, 32, 1905815.

    Article  CAS  Google Scholar 

  16. Biswas, A.; Rajeswari, M.; Srivastava, R. C.; Venkatesan, T.; Greene, R. L.; Lu, Q.; de Lozanne, A. L.; Millis, A. J. Strain-driven charge-ordered state in La0.67Ca0.33MnO3. Phys. Rev. B 2001, 63, 184424.

    Article  CAS  Google Scholar 

  17. Chen, H. H.; Millis, A. Charge transfer driven emergent phenomena in oxide heterostructures. J. Phys. Condens. Matter 2017, 29, 243001.

    Article  Google Scholar 

  18. Zhong, Z. C.; Hansmann, P. Band alignment and charge transfer in complex oxide interfaces. Phys. Rev. X 2017, 7, 011023.

    Google Scholar 

  19. Takahashi, K. S.; Kawasaki, M.; Tokura, Y. Interface ferromagnetism in oxide superlattices of CaMnO3/CaRuO3. Appl. Phys. Lett. 2001, 79, 1324–1326.

    Article  CAS  Google Scholar 

  20. Nichols, J.; Gao, X.; Lee, S.; Meyer, T. L.; Freeland, J. W.; Lauter, V.; Yi, D.; Liu, J.; Haskel, D.; Petrie, J. R. et al. Emerging magnetism and anomalous Hall effect in iridate-manganite heterostructures. Nat. Commun. 2016, 7, 12721.

    Article  CAS  Google Scholar 

  21. Wang, L. F.; Feng, Q. Y.; Kim, Y.; Kim, R.; Lee, K. H.; Pollard, S. D.; Shin, Y. J.; Zhou, H. B.; Peng, W.; Lee, D. et al. Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat. Mater. 2018, 17, 1087–1094.

    Article  CAS  Google Scholar 

  22. Meng, M.; Wang, Z.; Fathima, A.; Ghosh, S.; Saghayezhian, M.; Taylor, J.; Jin, R. Y.; Zhu, Y. M.; Pantelides, S. T.; Zhang, J. D. et al. Interface-induced magnetic polar metal phase in complex oxides. Nat. Commun. 2019, 10, 5248.

    Article  CAS  Google Scholar 

  23. Kan, D.; Aso, R.; Sato, R.; Haruta, M.; Kurata, H.; Shimakawa, Y. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide. Nat. Mater. 2016, 15, 432–437.

    Article  CAS  Google Scholar 

  24. Basletic, M.; Maurice, J. L.; Carrétéro, C.; Herranz, G.; Copie, O.; Bibes, M.; Jacquet, É.; Bouzehouane, K.; Fusil, S.; Barthélémy, A. Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat. Mater. 2008, 7, 621–625.

    Article  CAS  Google Scholar 

  25. Jia, C. L.; Mi, S. B.; Faley, M.; Poppe, U.; Schubert, J.; Urban, K. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahighresolution transmission electron microscopy. Phys. Rev. B 2009, 79, 081405.

    Article  CAS  Google Scholar 

  26. Chen, P. F.; Chen, B. B.; Tan, X. L.; Xu, H. R.; Xuan, X. F.; Guo, Z.; Jin, F.; Wu, W. B. High-TC ferromagnetic order in CaRuO3/La2/3Ca1/3MnO3 superlattices. Appl. Phys. Lett. 2013, 103, 262402.

    Article  CAS  Google Scholar 

  27. Chen, B. B.; Chen, P. F.; Xu, H. R.; Jin, F.; Guo, Z.; Lan, D.; Wan, S. Y.; Gao, G. Y.; Chen, F.; Wu, W. B. Interfacial control of ferromagnetism in ultrathin La0.67Ca0.33MnO3 sandwiched between CaRu1−xTixO3 (x = 0–0.8) epilayers. ACS Appl. Mater. Interfaces 2016, 8, 34924–34932.

    Article  CAS  Google Scholar 

  28. Gong, G. Q.; Gupta, A.; Xiao, G.; Lecoeur, P.; McGuire, T. R. Perovskite oxide superlattices: Magnetotransport and magnetic properties. Phys. Rev. B Condens. Matter 1996, 54, R3742–R3745.

    Article  CAS  Google Scholar 

  29. Ziese, M.; Bern, F.; Pippel, E.; Hesse, D.; Vrejoiu, I. Stabilization of ferromagnetic order in La0.7Sr0.3MnO3-SrRuO3 superlattices. Nano Lett. 2012, 12, 4276–4281.

    Article  CAS  Google Scholar 

  30. Ziese, M.; Vrejoiu, I.; Pippel, E.; Esquinazi, P.; Hesse, D.; Etz, C.; Henk, J.; Ernst, A.; Maznichenko, I. V.; Hergert, W. et al. Tailoring magnetic interlayer coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices. Phys. Rev. Lett. 2010, 104, 167203.

    Article  CAS  Google Scholar 

  31. Kumar, V. S.; Zhou, S. L.; Liu, R. R.; Zhu, Y. M.; Liu, H. J.; Chin, Y. Y.; Lin, H. J.; Chen, C. T.; Zhan, Q.; Chu, Y. H. Antiferromagnetic interfacial coupling and giant magnetic hysteresis in La0.5Ca0.5MnO3-SrRuO3 superlattices. ACS Omega 2018, 3, 14266–14273.

    Article  CAS  Google Scholar 

  32. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  33. Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J. Wien2K: An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties; Vienna University of Technology: Schwarz, Austria. 2001.

    Google Scholar 

  34. Wannier, G. H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 1937, 52, 191–197.

    Article  CAS  Google Scholar 

  35. Marzari, N.; Mostofi, A. A.; Yates, J. R.; Souza, I.; Vanderbilt, D. Maximally localized wannier functions: Theory and applications. Rev. Mod. Phys. 2012, 84, 1419–1475.

    Article  CAS  Google Scholar 

  36. Si, L.; Xiao, W.; Kaufmann, J.; Tomczak, J. M.; Lu, Y.; Zhong, Z. C.; Held, K. Topotactic hydrogen in nickelate superconductors and akin infinite-layer oxides ABO2. Phys. Rev. Lett. 2020, 124, 166402.

    Article  CAS  Google Scholar 

  37. Si, L.; Janson, O.; Li, G.; Zhong, Z. C.; Liao, Z. L.; Koster, G.; Held, K. Quantum anomalous Hall state in ferromagnetic SrRuO3 (111) bilayers. Phys. Rev. Lett. 2017, 119, 026402.

    Article  Google Scholar 

  38. Gull, E.; Millis, A. J.; Lichtenstein, A. I.; Rubtsov, A. N.; Troyer, M.; Werner, P. Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 2011, 83, 349–404.

    Article  CAS  Google Scholar 

  39. Parragh, N.; Toschi, A.; Held, K.; Sangiovanni, G. Conserved quantities of SU(2)-invariant interactions for correlated fermions and the advantages for quantum Monte Carlo simulations. Phys. Rev. B 2012, 86, 155158.

    Article  CAS  Google Scholar 

  40. Wallerberger, M.; Hausoel, A.; Gunacker, P.; Kowalski, A.; Parragh, N.; Goth, F.; Held, K.; Sangiovanni, G. w2dynamics: Local one- and two-particle quantities from dynamical mean field theory. Comput. Phys. Commun. 2019, 235, 388–399.

    Article  CAS  Google Scholar 

  41. Huang, Z.; Wang, L. F.; Chen, P. F.; Gao, G. Y.; Tan, X. L.; Zhi, B. W.; Xuan, X. F.; Wu, W. B. Tuning the ground state of La0.67Ca0.33MnO3 films via coherent growth on orthorhombic NdGaO3 substrates with different orientations. Phys. Rev. B 2012, 86, 014410.

    Article  CAS  Google Scholar 

  42. Koster, G.; Klein, L.; Siemons, W.; Rijnders, G.; Dodge, J. S.; Eom, C. B.; Blank, D. H. A.; Beasley, M. R. Structure, physical properties, and applications of SrRuO3 thin films. Rev. Mod. Phys. 2012, 84, 253–298.

    Article  CAS  Google Scholar 

  43. Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens. Matter 1997, 9, 8171–8199.

    Article  CAS  Google Scholar 

  44. de Andrés, A.; Rubio, J.; Castro, G.; Taboada, S.; Martínez, J. L.; Colino, J. M. Structural and magnetic properties of ultrathin epitaxial La0.7Ca0.3MnO3 manganite films: Strain versus finite size effects. Appl. Phys. Lett. 2003, 83, 713–715.

    Article  CAS  Google Scholar 

  45. Keunecke, M.; Lyzwa, F.; Schwarzbach, D.; Roddatis, V.; Gauquelin, N.; Müller-Caspary, K.; Verbeeck, J.; Callori, S. J.; Klose, F.; Jungbauer, M. et al. High-TC interfacial ferromagnetism in SrMnO3/LaMnO3 superlattices. Adv. Funct. Mater. 2020, 30, 1808270.

    Article  CAS  Google Scholar 

  46. Rondinelli, J. M.; May, S. J.; Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 2012, 37, 261–270.

    Article  CAS  Google Scholar 

  47. Nair, H. P.; Liu, Y.; Ruf, J. P.; Schreiber, N. J.; Shang, S. L.; Baek, D. J.; Goodge, B. H.; Kourkoutis, L. F.; Liu, Z. K.; Shen, K. M. et al. Synthesis science of SrRuO3 and CaRuO3 epitaxial films with high residual resistivity ratios. APL Mater. 2018, 6, 046101.

    Article  CAS  Google Scholar 

  48. Gerra, G.; Tagantsev, A. K.; Setter, N.; Parlinski, K. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3. Phys. Rev. Lett. 2006, 96, 107603.

    Article  CAS  Google Scholar 

  49. Guo, H. W.; Wang, Z.; Dong, S.; Ghosh, S.; Saghayezhian, M.; Chen, L. N.; Weng, Y. K.; Herklotz, A.; Ward, T. Z.; Jin, R. Y. et al. Interface-induced multiferroism by design in complex oxide superlattices. Proc. Natl. Acad. Sci. USA 2017, 114, E5062–E5069.

    Article  CAS  Google Scholar 

  50. Chen, B. B.; Xu, H. R.; Ma, C.; Mattauch, S.; Lan, D.; Jin, F.; Guo, Z.; Wan, S. Y.; Chen, P. F.; Gao, G. Y. et al. All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal. Science 2017, 357, 191–194.

    Article  CAS  Google Scholar 

  51. Lan, D.; Chen, B. B.; Qu, L. L.; Zhang, K. X.; Xu, L. Q.; Jin, F.; Guo, Z.; Chen, F.; Gao, G. Y.; Wu, W. B. Tuning antiferromagnetic interlayer exchange coupling in La0.67Ca0.33MnO3-based synthetic antiferromagnets. APL Mater. 2019, 7, 031119.

    Article  CAS  Google Scholar 

  52. Ahn, C. H.; Bhattacharya, A.; Di Ventra, M.; Eckstein, J. N.; Frisbie, C. D.; Gershenson, M. E.; Goldman, A. M.; Inoue, I. H.; Mannhart, J.; Millis, A. J. et al. Electrostatic modification of novel materials. Rev. Mod. Phys. 2006, 78, 1185–1212.

    Article  CAS  Google Scholar 

  53. Mannella, N.; Booth, C. H.; Rosenhahn, A.; Sell, B. C.; Nambu, A.; Marchesini, S.; Mun, B. S.; Yang, S. H.; Watanabe, M.; Ibrahim, K. et al. Temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1−xSrxMnO3. Phys. Rev. B 2008, 77, 125134.

    Article  CAS  Google Scholar 

  54. Jeong, H.; Jeong, S. G.; Mohamed, A. Y.; Lee, M.; Noh, W. S.; Kim, Y.; Bae, J. S.; Choi, W. S.; Cho, D. Y. Thickness-dependent orbital hybridization in ultrathin SrRuO3 epitaxial films. Appl. Phys. Lett. 2019, 115, 092906.

    Article  CAS  Google Scholar 

  55. Reitz, C.; Leufke, P. M.; Schneider, R.; Hahn, H.; Brezesinski, T. Large magnetoresistance and electrostatic control of magnetism in ordered mesoporous La1−xCaxMnO3 thin films. Chem. Mater. 2014, 26, 5745–5751.

    Article  CAS  Google Scholar 

  56. Valencia, S.; Konstantinovic, Z.; Schmitz, D.; Gaupp, A.; Balcells, L.; Martínez, B. Interfacial effects in manganite thin films with different capping layers of interest for spintronic applications. Phys. Rev. B 2011, 84, 024413.

    Article  CAS  Google Scholar 

  57. Beyreuther, E.; Grafström, S.; Eng, L. M.; Thiele, C.; Dörr, K. XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. Phys. Rev. B 2006, 73, 155425.

    Article  CAS  Google Scholar 

  58. Zheng, L. M.; Wang, X. R.; Lü, W. M.; Li, C. J.; Paudel, T. R.; Liu, Z. Q.; Huang, Z.; Zeng, S. W.; Han, K.; Chen, Z. H. et al. Ambipolar ferromagnetism by electrostatic doping of a manganite. Nat. Commun. 2018, 9, 1897.

    Article  CAS  Google Scholar 

  59. Tomioka, Y.; Asamitsu, A.; Tokura, Y. Magnetotransport properties and magnetostructural phenomenon in single crystals of La0.7(Ca1−ySry)0.3MnO3. Phys. Rev. B 2000, 63, 024421.

    Article  Google Scholar 

  60. Bhattacharya, A.; Zhai, X.; Warusawithana, M.; Eckstein, J. N.; Bader, S. D. Signatures of enhanced ordering temperatures in digital superlattices of (LaMnO3)m/(SrMnO3)2m. Appl. Phys. Lett. 2007, 90, 222503.

    Article  CAS  Google Scholar 

  61. May, S. J.; Ryan, P. J.; Robertson, J. L.; Kim, J. W.; Santos, T. S.; Karapetrova, E.; Zarestky, J. L.; Zhai, X.; te Velthuis, S. G. E.; Eckstein, J. N. et al. Enhanced ordering temperatures in antiferromagnetic manganite superlattices. Nat. Mater. 2009, 8, 892–897.

    Article  CAS  Google Scholar 

  62. Zhu, Y. Y.; Ye, B. Y.; Li, Q.; Liu, H.; Miao, T.; Wu, L. J.; Li, L.; Lin, L. F.; Zhu, Y.; Zhang, Z. et al. Nonmonotonic crossover in electronic phase separated manganite superlattices driven by the superlattice period. Phys. Rev. B 2020, 102, 235107.

    Article  CAS  Google Scholar 

  63. Paul, A.; Birol, T. Applications of DFT + DMFT in materials science. Annu. Rev. Mater. Sci. 2019, 49, 31–52.

    Article  CAS  Google Scholar 

  64. Yajima, T.; Minohara, M.; Bell, C.; Kumigashira, H.; Oshima, M.; Hwang, H. Y.; Hikita, Y. Enhanced electrical transparency by ultrathin LaAlO3 insertion at oxide metal/semiconductor heterointerfaces. Nano Lett. 2015, 15, 1622–1626.

    Article  CAS  Google Scholar 

  65. Yajima, T.; Hikita, Y.; Minohara, M.; Bell, C.; Mundy, J. A.; Kourkoutis, L. F.; Muller, D. A.; Kumigashira, H.; Oshima, M.; Hwang, H. Y. Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces. Nat. Commun. 2015, 6, 6759.

    Article  CAS  Google Scholar 

  66. Huang, Z.; Ariando; Wang, X. R.; Rusydi, A.; Chen, J. S.; Yang, H.; Venkatesan, T. Interface engineering and emergent phenomena in oxide heterostructures. Adv. Mater. 2018, 30, 1802439.

    Article  CAS  Google Scholar 

  67. Guo, H. W.; Saghayezhian, M.; Wang, Z.; Zhu, Y. M.; Zhang, J. D.; Plummer, W. Visualizing quantum phenomena at complex oxide interfaces: An atomic view from scanning transmission electron microscopy. Front. Phys. 2019, 15, 13401.

    Article  Google Scholar 

  68. Omar, G. J.; Li, M. S.; Chi, X.; Huang, Z.; Lim, Z. S.; Prakash, S.; Zeng, S. W.; Li, C. J.; Yu, X. J.; Tang, C. H. et al. Characteristic lengths of interlayer charge transfer in correlated oxide heterostructures. Nano Lett. 2020, 20, 2493–2499.

    Article  CAS  Google Scholar 

  69. Kim, J. R.; Jang, J.; Go, K. J.; Park, S. Y.; Roh, C. J.; Bonini, J.; Kim, J.; Lee, H. G.; Rabe, K. M.; Lee, J. S. et al. Stabilizing hidden room-temperature ferroelectricity via a metastable atomic distortion pattern. Nat. Commun. 2020, 11, 4944.

    Article  CAS  Google Scholar 

  70. Rondinelli, J. M.; Fennie, C. J. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv. Mater. 2012, 24, 1961–1968.

    Article  CAS  Google Scholar 

  71. Tokura, Y. Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 2006, 69, 797–851.

    Article  CAS  Google Scholar 

  72. Das, S.; Herklotz, A.; Pippel, E.; Guo, E. J.; Rata, D.; Dörr, K. Strain dependence of antiferromagnetic interface coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices. Phys. Rev. B 2015, 91, 134405.

    Article  CAS  Google Scholar 

  73. Das, S.; Rata, A. D.; Maznichenko, I. V.; Agrestini, S.; Pippel, E.; Gauquelin, N.; Verbeeck, J.; Chen, K.; Valvidares, S. M.; Babu Vasili, H. et al. Low-field switching of noncollinear spin texture at La0.7Sr0.3MnO3-SrRuO3 interfaces. Phys. Rev. B 2019, 99, 024416.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has supported by the National Basic Research Program of China (Nos. 2016YFA0401003, 2017YFA0403502, and 2020YFA0309100), the National Natural Science Foundation of China (Nos. 11974326, 12074365, 11804342, U2032218, and 51872278), the Fundamental Research Funds for the Central Universities (Nos. WK2030000035 and WK2340000102), and Hefei Science Center CAS. L. S. and K. H. were supported by the Austrian Science Fund (FWF) through Projects Nos. P30997 and P32044. Calculations have been done on the Vienna Scientific Clusters (VSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingfei Wang or Wenbin Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, L., Lan, D., Si, L. et al. Asymmetric interfaces and high-TC ferromagnetic phase in La0.67Ca0.33MnO3/SrRuO3 superlattices. Nano Res. 14, 3621–3628 (2021). https://doi.org/10.1007/s12274-021-3644-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3644-0

Keywords

Navigation