Skip to main content
Log in

Two-dimensional square transition metal dichalcogenides with lateral heterostructures

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fabrication of lateral heterostructures (LHS) is promising for a wide range of next-generation devices and could sufficiently unlock the potential of two-dimensional materials. Herein, we demonstrate the design of lateral heterostructures based on new building materials, namely 1S-MX2 LHS, using first-principles calculations. 1S-MX2 LHS exhibits excellent stability, demonstrating high feasibility in the experiment. The desired bandgap opening can endure application at room temperature and was confirmed in 1S-MX2 LHS with spin-orbit coupling (SOC). A strain strategy further resulted in efficient bandgap engineering and an intriguing phase transition. We also found that black phosphorus can serve as a competent substrate to support 1S-MX2 LHS with a coveted type-II band alignment, allowing versatile functionalized bidirectional heterostructures with built-in device functions. Furthermore, the robust electronic features could be maintained in the 1S-MX2 LHS with larger components. Our findings will not only renew interest in LHS studies by enriching their categories and properties, but also highlight the promise of these lateral heterostructures as appealing materials for future integrated devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    Article  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  3. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  4. Chen, X.; Wu, B.; Liu, Y. Q. Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 2016, 45, 2057–2074.

    Article  Google Scholar 

  5. Tang, Q.; Zhou, Z.; Chen, Z. F. Graphene-related nanomaterials: Tuning properties by functionalization. Nanoscale 2013, 5, 4541–4583.

    Article  Google Scholar 

  6. Jin, C. H.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 2009, 102, 195505.

    Article  Google Scholar 

  7. Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934.

    Article  Google Scholar 

  8. Tang, Q.; Bao, J.; Li, Y. F.; Zhou, Z.; Chen, Z. F. Tuning band gaps of BN nanosheets and nanoribbons via interfacial dihalogen bonding and external electric field. Nanoscale 2014, 6, 8624–8634.

    Article  Google Scholar 

  9. Alred, J. M.; Zhang, Z. H.; Hu, Z. L.; Yakobson, B. I. Interface-induced warping in hybrid two-dimensional materials. Nano Res. 2015, 8, 2015–2023.

    Article  Google Scholar 

  10. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  11. Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.

    Article  Google Scholar 

  12. Kou, L. Z.; Du, A. J.; Chen, C. F.; Frauenheim, T. Strain engineering of selective chemical adsorption on monolayer MoS2. Nanoscale 2014, 6, 5156–5161.

    Article  Google Scholar 

  13. Tian, H.; Chin, M. L.; Najmaei, S.; Guo, Q. S.; Xia, F. N.; Wang, H.; Dubey, M. Optoelectronic devices based on twodimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543–1560.

    Article  Google Scholar 

  14. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  15. Xie, M. Q.; Zhang, S. L.; Cai, B.; Huang, Y.; Zou, Y. S.; Guo, B.; Gu, Y.; Zeng, H. B. A promising two-dimensional solar cell donor: Black arsenic–phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14,000 cm2·V−1·s−1. Nano Energy 2016, 28, 433–439.

    Article  Google Scholar 

  16. Sun, Q. L.; Dai, Y.; Ma, Y. D.; Yin, N.; Wei, W.; Yu, L.; Huang, B. B. Design of lateral heterostructure from arsenene and antimonene. 2D Mater. 2016, 3, 035017.

    Article  Google Scholar 

  17. Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Twodimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352.

    Article  Google Scholar 

  18. Li, X. R.; Dai, Y.; Ma, Y. D.; Wei, W.; Yu, L.; Huang, B. B. Prediction of large-gap quantum spin hall insulator and Rashba–Dresselhaus effect in two-dimensional g-TlA (A = N, P, As, and Sb) monolayer films. Nano Res. 2015, 8, 2954–2962.

    Article  Google Scholar 

  19. Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135–6141.

    Article  Google Scholar 

  20. Son, Y.; Li, M. Y.; Cheng, C. C.; Wei, K. H.; Liu, P. W.; Wang, Q. H.; Li, L. J.; Strano, M. S. Observation of switchable photoresponse of a monolayer WSe2-MoS2 lateral heterostructure via photocurrent spectral atomic force microscopic imaging. Nano Lett. 2016, 16, 3571–3577.

    Article  Google Scholar 

  21. Du, A. J. In silico engineering of graphene-based van der Waals heterostructured nanohybrids for electronics and energy applications. Wires Comput. Mol. Sci. 2016, 6, 551–570.

    Article  Google Scholar 

  22. Ma, Z. N.; Hu, Z. P.; Zhao, X. D.; Tang, Q.; Wu, D. H.; Zhou, Z.; Zhang, L. X. Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C 2014, 118, 5593–5599.

    Article  Google Scholar 

  23. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.

    Article  Google Scholar 

  24. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  Google Scholar 

  25. Chen, C. C.; Li, Z.; Shi, L.; Cronin, S. B. Thermoelectric transport across graphene/hexagonal boron nitride/graphene heterostructures. Nano Res. 2015, 8, 666–672.

    Article  Google Scholar 

  26. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    Article  Google Scholar 

  27. Ma, X.-C.; Dai, Y.; Yu, L.; Huang, B.-B. Energy transfer in plasmonic photocatalytic composites. Light-Sci. Appl. 2016, 5, e16017.

    Article  Google Scholar 

  28. Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

    Article  Google Scholar 

  29. Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p–n junction with an atomically sharp interface. Science 2015, 349, 524–528.

    Article  Google Scholar 

  30. Mahjouri-Samani, M.; Lin, M. W.; Wang, K.; Lupini, A. R.; Lee, J.; Basile, L.; Boulesbaa, A.; Rouleau, C. M.; Puretzky, A. A.; Ivanov, I. N. et al. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 2015, 6, 7749.

    Article  Google Scholar 

  31. Yoo, Y.; Degregorio, Z. P.; Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 14281–14287.

    Article  Google Scholar 

  32. Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096–1101.

    Article  Google Scholar 

  33. Duesberg, G. S. Heterojunctions in 2D semiconductors: A perfect match. Nat. Mater. 2014, 13, 1075–1076.

    Article  Google Scholar 

  34. Kobayashi, Y.; Mori, S.; Maniwa, Y.; Miyata, Y. Bandgaptunable lateral and vertical heterostructures based on monolayer Mo1–x WxS2 alloys. Nano Res. 2015, 8, 3261–3271.

    Article  Google Scholar 

  35. Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

    Article  Google Scholar 

  36. Shi, Y. M.; Li, H.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744–2756.

    Article  Google Scholar 

  37. Sun, Q.; Sun, C. X.; Du, A. J.; Dou, S. X.; Li, Z. In-plane graphene/boron-nitride heterostructures as an efficient metal-free electrocatalyst for the oxygen reduction reaction. Nanoscale 2016, 8, 14084–14091.

    Article  Google Scholar 

  38. Sun, Q. L.; Dai, Y.; Ma, Y. D.; Wei, W.; Huang, B. B. Lateral heterojunctions within monolayer h-BN/graphene: A first-principles study. RSC Adv. 2015, 5, 33037–33043.

    Article  Google Scholar 

  39. Ma, Y. D.; Kou, L. Z.; Li, X.; Dai, Y.; Smith, S. C.; Heine, T. Quantum spin Hall effect and topological phase transition in two-dimensional square transition-metal dichalcogenides. Phys. Rev. B 2015, 92, 85427.

    Article  Google Scholar 

  40. Terrones, H.; Terrones, M. Electronic and vibrational properties of defective transition metal dichalcogenide Haeckelites: New 2D semi-metallic systems. 2D Mater. 2014, 1, 011003.

    Article  Google Scholar 

  41. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  42. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  43. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  44. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  45. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  46. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  Google Scholar 

  47. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

    Article  Google Scholar 

  48. Barnett, R. N.; Landman, U. Born-oppenheimer moleculardynamics simulations of finite systems: Structure and dynamics of (H2O)2. Phys. Rev. B 1993, 48, 2081–2097.

    Article  Google Scholar 

  49. Cai, B.; Xie, M. Q.; Zhang, S. L.; Huang, C. X.; Kan, E. J.; Chen, X. P.; Gu, Y.; Zeng, H. B. A promising two-dimensional channel material: Monolayer antimonide phosphorus. Sci. China Mater. 2016, 59, 648–656.

    Article  Google Scholar 

  50. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  Google Scholar 

  51. Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetalsemiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 54, 3112–3115.

    Article  Google Scholar 

  52. Zhang, S. L.; Xie, M. Q.; Cai, B.; Zhang, H. J.; Ma, Y. D.; Chen, Z. F.; Zhu, Z.; Hu, Z. Y.; Zeng, H. B. Semiconductortopological insulator transition of two-dimensional SbAs induced by biaxial tensile strain. Phys. Rev. B 2016, 93, 245303.

    Article  Google Scholar 

  53. Sun, Q. L.; Dai, Y.; Ma, Y. D.; Wei, W.; Huang, B. B. Vertical and bidirectional heterostructures from graphyne and MSe2 (M = Mo, W). J. Phys. Chem. Lett. 2015, 6, 2694–2701.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China (973 program, No. 2013CB632401), the National Natural Science foundation of China (Nos. 11374190 and 21333006), and the Taishan Scholar Program of Shandong Province, and 111 project B13029. L. Y. thanks the Natural Science Foundation of Shandong Province (No. ZR2013AM021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Dai, Y., Yin, N. et al. Two-dimensional square transition metal dichalcogenides with lateral heterostructures. Nano Res. 10, 3909–3919 (2017). https://doi.org/10.1007/s12274-017-1605-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1605-4

Keywords

Navigation