Skip to main content
Log in

ZrSe2-HfSe2 lateral heterostructures: stability, fundamental properties, and interline defects

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Lateral heterostructures have created new architecture design of two-dimensional (2D) materials. In this work, \(\hbox {ZrSe}_{{2}}\) and \(\hbox {HfSe}_{{2}}\) monolayers, and their lateral heterostructure are explored using first-principles calculations based on the projector-augmented wave (PAW) method. Materials’ stability is examined through phonon dispersion curves and ab initio molecular dynamic (AIMD) simulations. Density of states, electron localization function, and Bader charge analysis indicate the charge transfer from Zr and Hf atoms to Se atoms. Consequently, the chemical bonds are predominantly ionic. Electronic band structures assert their relative wide-gap semiconductor character with energy gaps between 1.17 and 1.26 eV. The studied 2D materials exhibit good light absorption from visible to ultraviolet regime with large absorption coefficient up to 19.45 (10\(^{4}\)/cm). In addition, interline defects, including vacancies and antisites, are also examined. It has been found that Zr and Hf single vacancies magnetize significantly the lateral heterostructures, and weaker magnetization is also observed with a Se single vacancy at Zr side. Magnetic properties appear as a result of the considerable modification of the charge transfer in the outermost orbital (Zr-4d, Hf-5d, and Se-4p). Meanwhile, the non-magnetic semiconductor nature is preserved upon creating a Se single vacancy at Hf-size and antisite defects. Results presented herein introduce new lateral heterostructures as prospective candidates for optoelectronic applications and clarify new features induced by the interline defects, which frequently appear during the synthesis in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)

    Google Scholar 

  2. S. Bharech, R. Kumar, A review on the properties and applications of graphene. J. Mater. Sci. Mech. Eng. 2(10), 70 (2015)

    Google Scholar 

  3. X. Wan, Y. Huang, Y. Chen, Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 45(4), 598–607 (2012)

    Google Scholar 

  4. S.S. Varghese, S. Lonkar, K. Singh, S. Swaminathan, A. Abdala, Recent advances in graphene based gas sensors. Sens. Actuat. B Chem. 218, 160–183 (2015)

    Google Scholar 

  5. N. Zhang, Y. Zhang, Y.-J. Xu, Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale 4(19), 5792–5813 (2012)

    Google Scholar 

  6. W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Graphene spintronics. Nat. Nanotechnol. 9(10), 794–807 (2014)

    ADS  Google Scholar 

  7. S. Sahu, G. Rout, Band gap opening in graphene: a short theoretical study. Int. Nano Lett. 7(2), 81–89 (2017)

    Google Scholar 

  8. D. Jariwala, A. Srivastava, P.M. Ajayan, Graphene synthesis and band gap opening. J. Nanosci. Nanotechnol. 11(8), 6621–6641 (2011)

    Google Scholar 

  9. K.M. McCreary, A.T. Hanbicki, J.T. Robinson, E. Cobas, J.C. Culbertson, A.L. Friedman, G.G. Jernigan, B.T. Jonker, Large-area synthesis of continuous and uniform MoS2 monolayer films on graphene. Adv. Func. Mater. 24(41), 6449–6454 (2014)

    Google Scholar 

  10. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, L. Cao, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3(1), 1–6 (2013)

    Google Scholar 

  11. J.C. Shaw, H. Zhou, Y. Chen, N.O. Weiss, Y. Liu, Y. Huang, X. Duan, Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 7(4), 511–517 (2014)

    Google Scholar 

  12. X. Wang, Y. Gong, G. Shi, W.L. Chow, K. Keyshar, G. Ye, R. Vajtai, J. Lou, Z. Liu, E. Ringe et al., Chemical vapor deposition growth of crystalline monolayer MoS2. ACS Nano 8(5), 5125–5131 (2014)

    Google Scholar 

  13. C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu, Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2(2), 131–136 (2014)

    Google Scholar 

  14. J. Chen, K. Shao, W. Yang, W. Tang, J. Zhou, Q. He, Y. Wu, C. Zhang, X. Li, X. Yang et al., Synthesis of wafer-scale monolayer WS2 crystals toward the application in integrated electronic devices. ACS Appl. Mater. Interfaces 11(21), 19381–19387 (2019)

    Google Scholar 

  15. J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, L.-J. Li, Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8(1), 923–930 (2014)

    Google Scholar 

  16. B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, C. Zhou, Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 9(6), 6119–6127 (2015)

    Google Scholar 

  17. Z. Lin, M.T. Thee, A.L. Elías, S. Feng, C. Zhou, K. Fujisawa, N. Perea-López, V. Carozo, H. Terrones, M. Terrones, Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers. APL Mater. 2(9), 092514 (2014)

    ADS  Google Scholar 

  18. Z. Wang, P. Liu, Y. Ito, S. Ning, Y. Tan, T. Fujita, A. Hirata, M. Chen, Chemical vapor deposition of monolayer Mo1-xWxS2 crystals with tunable band gaps. Sci. Rep. 6(1), 1–9 (2016)

    Google Scholar 

  19. W. Zhang, Z. Huang, W. Zhang, Y. Li, Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7(12), 1731–1737 (2014)

    Google Scholar 

  20. M. Zhang, Y. Zhu, X. Wang, Q. Feng, S. Qiao, W. Wen, Y. Chen, M. Cui, J. Zhang, C. Cai et al., Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride. J. Am. Chem. Soc. 137(22), 7051–7054 (2015)

    Google Scholar 

  21. H.-S. Tsai, J.-W. Liou, I. Setiyawati, K.-R. Chiang, C.-W. Chen, C.-C. Chi, Y.-L. Chueh, H. Ouyang, Y.-H. Tang, W.-Y. Woon et al., Photoluminescence characteristics of multilayer HfS2 synthesized on sapphire using ion implantation. Adv. Mater. Interfaces 5(8), 1701619 (2018)

    Google Scholar 

  22. D. Wang, X. Zhang, G. Guo, S. Gao, X. Li, J. Meng, Z. Yin, H. Liu, M. Gao, L. Cheng et al., Large-area synthesis of layered Hf2(1-x) Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater. 30(44), 1803285 (2018)

    Google Scholar 

  23. Q. Zhao, Y. Guo, K. Si, Z. Ren, J. Bai, X. Xu, Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Physica status solidi (b) 254(9), 1700033 (2017)

    ADS  Google Scholar 

  24. Y. Zhang, A comparison study of the structural, electronic, elastic, dielectric and dynamical properties of Zr-based monolayer dioxides (ZrO2) and dichalcogenides (ZrX2; X= S, Se or Te) as well as their janus structures (ZrXY; X, Y= O, S, Se or Te, Y\(\ne\) X). Physica E 134, 114855 (2021)

    Google Scholar 

  25. T.M.D. Huynh, D.K. Nguyen, T.D.H. Nguyen, V.K. Dien, H.D. Pham, M.-F. Lin, Geometric and electronic properties of monolayer HfX2 (X= S, Se, or Te): a first-principles calculation. Front. Mater. 7, 569756 (2021)

    Google Scholar 

  26. Q.-Y. Chen, M.-Y. Liu, C. Cao, Y. He, Engineering the electronic structure and optical properties of monolayer 1T-HfX2 using strain and electric field: A first principles study. Physica E 112, 49–58 (2019)

    ADS  Google Scholar 

  27. R.A.B. Villaos, H.N. Cruzado, J.S.C. Dizon, A.B. Maghirang III., Z.-Q. Huang, C.-H. Hsu, S.-M. Huang, H. Lin, F.-C. Chuang, Evolution of the electronic properties of ZrX2 (X= S, Se, or Te) thin films under varying thickness. J. Phys. Chem. C 125(1), 1134–1142 (2021)

    Google Scholar 

  28. G. Ding, G. Gao, Z. Huang, W. Zhang, K. Yao, Thermoelectric properties of monolayer MSe2 (M= Zr, Hf): low lattice thermal conductivity and a promising figure of merit. Nanotechnology 27(37), 375703 (2016)

    Google Scholar 

  29. H.-Y. Song, J.-J. Sun, M. Li, Enhancement of monolayer HfSe2 thermoelectric performance by strain engineering: a DFT calculation. Chem. Phys. Lett. 784, 139109 (2021)

    Google Scholar 

  30. D. Qin, X.-J. Ge, G.-Q. Ding, G.-Y. Gao, J.-T. Lü, Strain-induced thermoelectric performance enhancement of monolayer ZrSe2. RSC Adv. 7(75), 47243–47250 (2017)

    ADS  Google Scholar 

  31. X.-Y. Gao, J.-M. Zhang, A. Ali, X.-M. Wei, Y.-H. Huang, Effects of the vacancy and doping on the electronic and magnetic characteristics of ZrSe2 monolayer: A first-principles investigation. Thin Solid Films 732, 138790 (2021)

    ADS  Google Scholar 

  32. A. Yadav, S. Kumar, M. Muruganathan, R. Kumar, Defect induced magnetism in monolayer HfSe2: an ab initio study. Appl. Surf. Sci. 491, 517–525 (2019)

    ADS  Google Scholar 

  33. X. Zhao, C. Yang, T. Wang, X. Ma, S. Wei, C. Xia, 3d transition metal doping-induced electronic structures and magnetism in 1T-HfSe2 monolayers. RSC Adv. 7(83), 52747–52754 (2017)

    ADS  Google Scholar 

  34. X. Wang, J. Du, S. Wei, Impurity characteristics of group V and VII element-doped two-dimensional ZrSe2 monolayer. Physica E 93, 279–283 (2017)

    ADS  Google Scholar 

  35. B.V. Lotsch, Vertical 2D heterostructures. Annu. Rev. Mater. Res. 45, 85–109 (2015)

    ADS  Google Scholar 

  36. S.-J. Liang, B. Cheng, X. Cui, F. Miao, Van der waals heterostructures for high-performance device applications: challenges and opportunities. Adv. Mater. 32(27), 1903800 (2020)

    Google Scholar 

  37. F. Khan, H. Din, S. Khan, G. Rehman, M. Bilal, C.V. Nguyen, I. Ahmad, L.-Y. Gan, B. Amin, Theoretical investigation of electronic structure and thermoelectric properties of MX2 (M= Zr, Hf; X= S, Se) van der Waals heterostructures. J. Phys. Chem. Solids 126, 304–309 (2019)

    ADS  Google Scholar 

  38. D. Tsoutsou, K.E. Aretouli, P. Tsipas, J. Marquez-Velasco, E. Xenogiannopoulou, N. Kelaidis, S. Aminalragia Giamini, A. Dimoulas, Epitaxial 2D MoSe2 (HfSe2) semiconductor/2D TaSe2 metal van der Waals heterostructures. ACS Appl. Mater. Interfaces 8(3), 1836–1841 (2016)

    Google Scholar 

  39. Q. Luo, S. Yin, X. Sun, G. Guo, X. Dai, Interlayer coupling and external electric field controllable electronic structures and Schottky contact of HfSeX (X= S, Se)/graphene van der Waals heterostructures. Diam. Relat. Mater. 128, 109223 (2022)

    ADS  Google Scholar 

  40. P. Chen, L. Zhang, R. Wang, J. Shang, S. Zhang, Electronic and optical properties of the ZrS2/HfSe2 van der Waals heterobilayer with native type-II band alignment. Chem. Phys. Lett. 734, 136703 (2019)

    Google Scholar 

  41. J. Wang, Z. Li, H. Chen, G. Deng, X. Niu, Recent advances in 2D lateral heterostructures. Nano-Micro Lett. 11(1), 1–31 (2019)

    ADS  Google Scholar 

  42. J. Zhao, K. Cheng, N. Han, J. Zhang, Growth control, interface behavior, band alignment, and potential device applications of 2D lateral heterostructures. Wiley Interdisciplinary Rev. Comput. Mol. Sci. 8(2), e1353 (2018)

    Google Scholar 

  43. M.P. Levendorf, C.-J. Kim, L. Brown, P.Y. Huang, R.W. Havener, D.A. Muller, J. Park, Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488(7413), 627–632 (2012)

    ADS  Google Scholar 

  44. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135–1142 (2014)

    ADS  Google Scholar 

  45. C. Huang, S. Wu, A.M. Sanchez, J.J. Peters, R. Beanland, J.S. Ross, P. Rivera, W. Yao, D.H. Cobden, X. Xu, Lateral heterojunctions within monolayer MoS22-WSe2 semiconductors. Nat. Mater. 13(12), 1096–1101 (2014)

    Google Scholar 

  46. X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9(12), 1024–1030 (2014)

    ADS  Google Scholar 

  47. H. Guo, W. Jiang, H. Fan, X. He, Y. Li, X. Tian, Theoretical design of SnTe/GeS lateral heterostructures: a first-principles study. Physica B 583, 412047 (2020)

    Google Scholar 

  48. G.-X. Chen, X.-G. Li, Y.-P. Wang, J.N. Fry, H.-P. Cheng, Two-dimensional lateral GaN/SiC heterostructures: first-principles studies of electronic and magnetic properties. Phys. Rev. B 95(4), 045302 (2017)

    ADS  Google Scholar 

  49. J. Liu, F. Tian, D. Wang, D. Fang, X. Fang, H. Zhao, X. Yang, W. Li, J. Li, X. Wang et al., First principles studies on infrared band structure and absorption of As/Sb lateral heterostructures. J. Appl. Phys. 131(2), 023101 (2022)

    ADS  Google Scholar 

  50. N. Mwankemwa, S. Chen, S. Gao, Y. Xiao, W. Zhang, D. Zhu, First-principles calculations to investigate the electronic and optical properties of (MoS2)4-n/(MoSSe)n lateral heterostructure. J. Phys. Chem. Solids 154, 110049 (2021)

    Google Scholar 

  51. G. Guo, G. Zhang, H. Wu, Y. Zhang, Z. Xie, Insights on the optoelectronic properties in two-dimensional Janus lateral In2SeTe/Ga2STe heterostructure. Thin Solid Films 718, 138479 (2021)

    ADS  Google Scholar 

  52. G. Guo, C. Xu, S. Tan, Z. Xie, Theoretical design of Janus-In2STe/InSe lateral heterostructure: a DFT investigation. Physica E 143, 115359 (2022)

    Google Scholar 

  53. J. Yuan, N. Yu, J. Wang, K.-H. Xue, X. Miao, Design lateral heterostructure of monolayer ZrS2 and HfS2 from first principles calculations. Appl. Surf. Sci. 436, 919–926 (2018)

    ADS  Google Scholar 

  54. V. Van On, J. Guerrero-Sanchez, R. Ponce-Pérez, J. Rivas-Silva, G.H. Cocoletzi, D. Hoat, First-principles investigation of the (HfSe2)4-n-(HfSSe)n (n= 0, 1, 2, 3, 4) lateral heterostructures. Int. J. Quantum Chem. 122(6), e26857 (2022)

    Google Scholar 

  55. Y.J. Zheng, Y. Chen, Y.L. Huang, P.K. Gogoi, M.-Y. Li, L.-J. Li, P.E. Trevisanutto, Q. Wang, S.J. Pennycook, A.T. Wee et al., Point defects and localized excitons in 2D WSe2. ACS Nano 13(5), 6050–6059 (2019)

    Google Scholar 

  56. F. Ersan, A.G. Gökçe, E. Aktürk, Point defects in hexagonal germanium carbide monolayer: a first-principles calculation. Appl. Surf. Sci. 389, 1–6 (2016)

    ADS  Google Scholar 

  57. Z. Cao, M. Harb, S. Lardhi, L. Cavallo, Impact of interfacial defects on the properties of monolayer transition metal dichalcogenide lateral heterojunctions. J. Phys. Chem. Lett. 8(7), 1664–1669 (2017)

    Google Scholar 

  58. S. Thomas, M.A. Zaeem, A new planar BCN lateral heterostructure with outstanding strength and defect-mediated superior semiconducting to metallic properties. Phys. Chem. Chem. Phys. 22(38), 22066–22077 (2020)

    Google Scholar 

  59. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996)

    Google Scholar 

  60. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)

    ADS  Google Scholar 

  61. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    ADS  MathSciNet  Google Scholar 

  62. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  63. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

This research is funded by Thu Dau Mot University, Binh Duong Province, Vietnam under Grant No. DT.22.1-015. Calculations have been performed in the high-performance computing cluster (HPCC) of Thu Dau Mot University (TDMU), Binh Duong Province, Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Hoat.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van On, V., Thuy, H.T.P., Van Ngoc, H. et al. ZrSe2-HfSe2 lateral heterostructures: stability, fundamental properties, and interline defects. Appl. Phys. A 129, 259 (2023). https://doi.org/10.1007/s00339-023-06522-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06522-3

Keywords

Navigation