Skip to main content
Log in

Lateral epitaxial growth of two-dimensional heterostructure linked by gold adatoms

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lateral two-dimensional (2D) heterostructures have great potential for device engineering at the atomistic scale. Their production is hindered by difficulties in obtaining atomically sharp interface free from intermixture. Here we report the continuous construction of a lateral heterostructure using blue phosphorene and tetrafluoro-tetracyanoquinodimethane (F4TCNQ) as the building blocks. The lateral heterostructure is achieved by linking the semiconducting F4TCNQ-Au metal organic framework and the metallic blue phosphorene-Au network via Au adatoms. The structural and electronic properties of the heterostructure have been investigated by means of scanning tunneling microscopy and spectroscopy (STM/S), complemented by density functional theory (DFT) calculations, demonstrating a structurally and electrically abrupt interface. Our approach offers the possibility of high flexibility and control that can be extended to other metal-organic species and 2D materials, establishing a foundation for the development of atomically thin in-plane superlattice and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iannaccone, G.; Bonaccorso, F.; Colombo, L.; Fiori, G. Quantum engineering of transistors based on 2D materials heterostructures. Nat. Nanotechnol. 2018, 13, 183–191.

    CAS  Google Scholar 

  2. Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.

    CAS  Google Scholar 

  3. Liu, Y.; Huang, Y.; Duan, X. F. van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333.

    CAS  Google Scholar 

  4. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    CAS  Google Scholar 

  5. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    CAS  Google Scholar 

  6. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    CAS  Google Scholar 

  7. Yang, W.; Chen, G. R.; Shi, Z. W.; Liu, C. C.; Zhang, L. C.; Xie, G. B.; Cheng, M.; Wang, D. M.; Yang, R.; Shi, D. X. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797.

    CAS  Google Scholar 

  8. Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev, R. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764–767.

    CAS  Google Scholar 

  9. Niu, T. C.; Li, A. From two-dimensional materials to heterostructures. Prog. Surf. Sci. 2015, 90, 21–45.

    CAS  Google Scholar 

  10. Wang, J. W.; Li, Z. Q.; Chen, H. Y.; Deng, G. W.; Niu, X. B. Recent advances in 2D lateral heterostructures. Nano-Micro Lett. 2019, 11, 48.

    Google Scholar 

  11. Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236–6296.

    CAS  Google Scholar 

  12. Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; De Lara, D. P.; Jarillo-Herrero, P.; Gorbachev, R. V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68.

    CAS  Google Scholar 

  13. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.

    CAS  Google Scholar 

  14. Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

    CAS  Google Scholar 

  15. Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627–632.

    CAS  Google Scholar 

  16. Sutter, P.; Cortes, R.; Lahiri, J.; Sutter, E. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett. 2012, 12, 4869–4874.

    CAS  Google Scholar 

  17. Liu, L.; Park, J.; Siegel, D. A.; McCarty, K. F.; Clark, K. W.; Deng, W.; Basile, L.; Idrobo, J. C.; Li, A. P.; Gu, G. Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 2014, 343, 163–167.

    CAS  Google Scholar 

  18. Wang, H. S.; Chen, L. X.; Elibol, K.; He, L.; Wang, H. M.; Chen, C.; Jiang, C. X.; Li, C.; Wu, T. R.; Cong, C. X. et al. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat. Mater., in press, DOI: https://doi.org/10.1038/s41563-020-00806-2.

  19. Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

    CAS  Google Scholar 

  20. Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2−WSe2 semiconductors. Nat. Mater. 2014, 13, 1096–1101.

    CAS  Google Scholar 

  21. Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

    CAS  Google Scholar 

  22. Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2−MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524–528.

    CAS  Google Scholar 

  23. Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.

    Google Scholar 

  24. Ye, K.; Liu, L. X.; Liu, Y. J.; Nie, A. M.; Zhai, K.; Xiang, J. Y.; Wang, B. C.; Wen, F. S.; Mu, C. P.; Zhao, Z. S. et al. Lateral bilayer MoS2−WS2 heterostructure photodetectors with high responsivity and detectivity. Adv. Opt. Mater. 2019, 7, 1900815.

    CAS  Google Scholar 

  25. Fiori, G.; Betti, A.; Bruzzone, S.; Iannaccone, G. Lateral graphene-hBCN heterostructures as a platform for fully two-dimensional transistors. ACS Nano 2012, 6, 2642–2648.

    CAS  Google Scholar 

  26. Sahoo, P. K.; Memaran, S.; Xin, Y.; Balicas, L.; Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 2018, 553, 63–67.

    CAS  Google Scholar 

  27. Liu, D. Y.; Hong, J. H.; Wang, X.; Li, X. B.; Feng, Q. L.; Tan, C. W.; Zhai, T. Y.; Ding, F.; Peng, H. L.; Xu, H. Diverse atomically sharp interfaces and linear dichroism of 1T’ ReS2−ReSe2 lateral p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1804696.

    Google Scholar 

  28. Kiraly, B.; Mannix, A. J.; Hersam, M. C.; Guisinger, N. P. Graphene-silicon heterostructures at the two-dimensional limit. Chem. Mater. 2015, 27, 6085–6090.

    CAS  Google Scholar 

  29. Liu, X. L.; Wei, Z. H.; Balla, I.; Mannix, A. J.; Guisinger, N. P.; Luijten, E.; Hersam, M. C. Self-assembly of electronically abrupt borophene/organic lateral heterostructures. Sci. Adv. 2017, 3, e1602356.

    Google Scholar 

  30. Zhang, J. L.; Ye, X.; Gu, C.; Han, C.; Sun, S.; Wang, L.; Chen, W. Non-covalent interaction controlled 2D organic semiconductor films: Molecular self-assembly, electronic and optical properties, and electronic devices. Surf. Sci. Rep. 2020, 75, 100481.

    CAS  Google Scholar 

  31. Xing, L. B.; Peng, Z. T.; Li, W. T.; Wu, K. On controllability and applicability of surface molecular self-assemblies. Acc. Chem. Res. 2019, 52, 1048–1058.

    CAS  Google Scholar 

  32. Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 2011, 332, 228–231.

    CAS  Google Scholar 

  33. He, X. Y.; Zhang, L.; Chua, R.; Wong, P. K. J.; Arramel, A.; Feng, Y. P.; Wang, S. J.; Chi, D. Z.; Yang, M.; Huang, Y. L. et al. Selective self-assembly of 2,3-diaminophenazine molecules on MoSe2 mirror twin boundaries. Nat. Commun. 2019, 10, 2847.

    Google Scholar 

  34. Gobbi, M.; Orgiu, E.; Samorì, P. When 2D materials meet molecules: Opportunities and challenges of hybrid organic/inorganic van der Waals heterostructures. Adv. Mater. 2018, 30, 1706103.

    Google Scholar 

  35. Yeh, C. H.; Liang, Z. Y.; Lin, Y. C.; Chen, H. C.; Fan, T.; Ma, C. H.; Chu, Y. H.; Suenaga, K.; Chiu, P. W. Graphene-transition metal dichalcogenide heterojunctions for scalable and low-power complementary integrated circuits. ACS Nano 2020, 14, 985–992.

    CAS  Google Scholar 

  36. Chen, K.; Wan, X.; Xie, W. G.; Wen, J. X.; Kang, Z. W.; Zeng, X. L.; Chen, H. J.; Xu, J. B. Lateral built-in potential of monolayer MoS2−WS2 in-plane heterostructures by a shortcut growth strategy. Adv. Mater. 2015, 27, 6431–6437.

    CAS  Google Scholar 

  37. Fritton, M.; Duncan, D. A.; Deimel, P. S.; Rastgoo-Lahrood, A.; Allegretti, F.; Barth, J. V.; Heckl, W. M.; Björk, J.; Lackinger, M. The role of kinetics versus thermodynamics in surface-assisted ullmann coupling on gold and silver surfaces. J. Am. Chem. Soc. 2019, 141, 4824–4832.

    CAS  Google Scholar 

  38. Zhang, J. L.; Zhao, S. T.; Han, C.; Wang, Z. Z.; Zhong, S.; Sun, S.; Guo, R.; Zhou, X.; Gu, C. D.; Yuan, K. D. et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett. 2016, 16, 4903–4908.

    CAS  Google Scholar 

  39. Tian, H.; Zhang, J. Q.; Ho, W.; Xu, J. P.; Xia, B. W.; Xia, Y. P.; Fan, J.; Xu, H.; Xie, M. H.; Tong, S. Y. Two-dimensional metal-phosphorus network. Matter 2020, 2, 111–118.

    Google Scholar 

  40. Sun, S.; Zhao, S. T.; Luo, Y. Z.; Gu, X. Y.; Lian, X.; Tadich, A.; Qi, D. C.; Ma, Z. R.; Zheng, Y.; Gu, C. D. et al. Designing Kagome lattice from potassium atoms on phosphorus-gold surface alloy. Nano Lett. 2020, 20, 5583–5589.

    CAS  Google Scholar 

  41. Sun, S.; Yang, T.; Ma, Z. R.; Ding, H. H.; Zhao, S. T.; Hu, J.; Xu, Q.; Lian, X.; Gu, C. D.; Li, Z. Y. et al. Experimental realization of one-dimensional metal-inorganic chain: Gold-phosphorus chain. ACS Mater. Lett. 2020, 2, 873–879.

    CAS  Google Scholar 

  42. Rangger, G. M.; Hofmann, O. T.; Romaner, L.; Heimel, G.; Bröker, B.; Blum, R. P.; Johnson, R. L.; Koch, N.; Zojer, E. F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals. Phys. Rev. B 2009, 79, 165306.

    Google Scholar 

  43. Gaulding, E. A.; Hao, J.; Kang, H. S.; Miller, E. M.; Habisreutinger, S. N.; Zhao, Q.; Hazarika, A.; Sercel, P. C.; Luther, J. M.; Blackburn, J. L. Conductivity tuning via doping with electron donating and withdrawing molecules in perovskite CsPbI3 nanocrystal films. Adv. Mater. 2019, 31, 1902250.

    Google Scholar 

  44. Yamane, H.; Kosugi, N. High hole-mobility molecular layer made from strong electron acceptor molecules with metal adatoms. J. Phys. Chem. Lett. 2017, 8, 5366–5371.

    CAS  Google Scholar 

  45. Si, N.; Shen, T.; Zhou, D. C.; Tang, Q.; Jiang, Y. X.; Ji, Q. M.; Huang, H.; Liu, W.; Li, S.; Niu, T. C. Imaging and dynamics of water hexamer confined in nanopores. ACS Nano 2019, 13, 10622–10630.

    CAS  Google Scholar 

  46. Zhao, S. T.; Zhang, J. L.; Chen, W.; Li, Z. Y. Structure of blue phosphorus grown on Au (111) surface revisited. J. Phys. Chem. C 2019, 124, 2024–2029.

    Google Scholar 

  47. Zhang, J. L.; Zhao, S. T.; Sun, S.; Ding, H. H.; Hu, J.; Li, Y. L.; Xu, Q.; Yu, X. J.; Telychko, M.; Su, J. et al. Synthesis of monolayer blue phosphorus enabled by silicon intercalation. ACS Nano 2020, 14, 3687–3695.

    CAS  Google Scholar 

  48. Gerbert, D.; Maaß, F.; Tegeder, P. Extended space charge region and unoccupied molecular band formation in epitaxial tetrafluorotetracy-anoquinodimethane films. J. Phys. Chem. C 2017, 121, 15696–15701.

    CAS  Google Scholar 

  49. Faraggi, M. N.; Jiang, N.; Gonzalez-Lakunza, N.; Langner, A.; Stepanow, S.; Kern, K.; Arnau, A. Bonding and charge transfer in metal-organic coordination networks on Au (111) with strong acceptor molecules. J. Phys. Chem. C 2012, 116, 24558–24565.

    CAS  Google Scholar 

  50. Ryder, C. R.; Wood, J. D.; Wells, S. A.; Hersam, M. C. Chemically tailoring semiconducting two-dimensional transition metal dichal-cogenides and black phosphorus. ACS Nano 2016, 10, 3900–3917.

    CAS  Google Scholar 

  51. Huang, Y. L.; Zheng, Y. J.; Song, Z. B.; Chi, D. Z.; Wee, A. T. S.; Quek, S. Y. The organic-2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241–3264.

    CAS  Google Scholar 

  52. Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151.

    CAS  Google Scholar 

  53. Zhu, L. Y.; Kim, E. G.; Yi, Y. P.; Bredas, J. L. Charge transfer in molecular complexes with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ): A density functional theory study. Chem. Mater. 2011, 23, 5149–5159.

    CAS  Google Scholar 

  54. Goronzy, D. P.; Ebrahimi, M.; Rosei, F.; Arramel; Fang, Y.; De Feyter, S.; Tait, S. L.; Wang, C.; Beton, P. H.; Wee, A. T. S. et al. Supramolecular assemblies on surfaces: Nanopatterning, functionality, and reactivity. ACS Nano 2018, 12, 7445–7481.

    CAS  Google Scholar 

  55. Horcas, I.; Fernández, R.; Gomez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    CAS  Google Scholar 

  56. Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Centr. Eur. J. Phys. 2012, 10, 181–188.

    Google Scholar 

  57. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    CAS  Google Scholar 

  58. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

    CAS  Google Scholar 

  59. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

    Google Scholar 

  60. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  61. Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.

    Google Scholar 

  62. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Google Scholar 

  63. Tersoff, J.; Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983, 50, 1998–2001.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Natural Science Foundation of Jiangsu Province (No. BK20181297), the National Natural Science Foundation of China (Nos. 21875108, 21403282, and 51602155), and the Fundamental Research Funds for Central Universities (Nos. 30919011257, 30917015106, and 30918011340). T. C. N. thanks Dr. Jialin Zhang for helpful discussions on the structure of BlueP-Au network.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Li or Tianchao Niu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, N., Shen, T., Liu, X. et al. Lateral epitaxial growth of two-dimensional heterostructure linked by gold adatoms. Nano Res. 14, 887–892 (2021). https://doi.org/10.1007/s12274-020-3194-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3194-x

Keywords

Navigation