Skip to main content
Log in

Interface-induced warping in hybrid two-dimensional materials

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional hybrid materials consisting of heterogeneous domains have been of great interest. Using empirical molecular dynamical simulation, we show that the morphology of such hybrid 2D materials can extend into the third dimension via strong warping intrinsic to the interfaces between the domains. The interface warping stems from the compressive stress in the domain with a larger lattice constant and even penetrates into the stretched domain. Based on classic plate theory, we analytically quantify the amplitude, wave length and penetration depth of the interface warping as functions of the lattice mismatch, achieving good agreement with the simulations. Moreover, we propose that periodically placing pentagon-heptagon dislocations along the interface can eliminate the warping in the 2D material and such defective interface can be more favorable than the warped one over a critical domain size, which is consistent with recent experimental observations. Our results suggest that the interface warping in 2D hybrid materials should be considered in further exploring their promising properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ci, L.; Song, L.; Jin, C.; Jariwala, D.; Wu, D.; Li, Y.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L.; Liu, F.; Ajayan, P. M. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.

    Article  Google Scholar 

  2. Gannett, W.; Regan, W.; Watanabe, K.; Taniguchi, T.; Crommie, M. F.; Zettl, A. Boron nitride substrates for high mobility chemical vapor deposited graphene. Appl. Phys. Lett. 2011, 98, 242105.

    Article  Google Scholar 

  3. Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Peres, N. M. R.; Leist, J.; Geim, A. K.; Novoselov, K. S.; et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science (New York, N.Y.), 2012, 335, 947–50.

    Article  Google Scholar 

  4. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech 2010, 5, 722–726.

    Article  Google Scholar 

  5. Sutter, P.; Cortes, R.; Lahiri, J.; Sutter, E. Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett. 2012, 12, 4869–4874.

    Article  Google Scholar 

  6. Liu, Z.; Ma, L.; Shi, G.; Zhou, W.; Gong, Y.; Lei, S.; Yang, X.; Zhang, J.; Yu, J.; Hackenberg, K. P.; Babakhani, A.; Idrobo, J.-C.; Vajtai, R.; Lou, J.; et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotech. 2013, 8, 119–24.

    Article  Google Scholar 

  7. Gao, Y.; Zhang, Y.; Chen, P.; Li, Y.; Liu, M.; Gao, T.; Ma, D.; Chen, Y.; Cheng, Z.; Qiu, X.; Duan, W.; Liu, Z. Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges. Nano Lett. 2013, 13, 3439–43.

    Article  Google Scholar 

  8. Bhowmick, S.; Singh, A. K.; Yakobson, B. I. Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride. J. Phys. Chem. 2011, 9889–9893.

    Google Scholar 

  9. Zhang, Z.; Yang, Y.; Yakobson, B. I. Grain boundaries in hybrid two-dimensional materials. J. Mech. Phys. Solid 2014, 70, 62–70.

    Article  Google Scholar 

  10. Zhang, Z.; Guo, W. Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations. Phys. Rev. B 2008, 77, 075403.

    Article  Google Scholar 

  11. Zhou, H.; Zhu, J.; Liu, Z.; Yan, Z.; Fan, X.; Lin, J.; Wang, G.; Yan, Q.; Yu, T.; Ajayan, P. M.; Tour, J. M. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 2014, 7, 1232–1240.

    Article  Google Scholar 

  12. Guo, N.; Wei, J. Q.; Jia, Y.; Sun, H. H.; Wang, Y. H.; Zhao, K. H.; Shi, X. L. Zhang, L. W.; Li, X. M.; Cao, A. Y.; Zhu, H. W.; Wang, K. L. Fabrication of large area hexagonal boron nitride thin films for bendable capacitors. Nano Res. 2013, 6, 602–610.

    Article  Google Scholar 

  13. Han, M.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

    Article  Google Scholar 

  14. Son, Y.-W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

    Article  Google Scholar 

  15. Barone, V.; Peralta, J. E. Magnetic boron nitride nanoribbons with tunable electronic properties. Nano Lett. 2008, 8, 2210–2214.

    Article  Google Scholar 

  16. Quhe, R.; Zheng, J.; Luo, G.; Liu, Q.; Qin, R.; Zhou, J.; Yu, D.; Nagase, S.; Mei, W.-N.; Gao, Z.; Lu, J. Tunable and sizable band gap of single-layer graphene sandwiched between hexagonal boron nitride. NPG Asia Mater. 2012, 4, e6.

    Article  Google Scholar 

  17. Fan, Y.; Zhao, M.; Wang, Z.; Zhang, X.; Zhang, H. Tunable electronic structures of graphene/boron nitride heterobilayers. Appl. Phys. Lett. 2011, 98, 083103.

    Article  Google Scholar 

  18. Muchharla, B.; Pathak, A.; Liu, Z.; Song, L.; Jayasekera, T.; Kar, S.; Vajtai, R.; Balicas, L.; Ajayan, P. M.; Talapatra, S.; Ali, N. Tunable electronics in large-area atomic layers of boron-nitrogen-carbon. Nano Lett. 2013, 13, 3476–3481.

    Article  Google Scholar 

  19. Li, C.; Jin, W.; Xiang, H.; Lefkidis, G.; Hübner, W. Theory of laser-induced ultrafast magneto-optic spin flip and transfer in charged two-magnetic-center molecular ions: Role of bridging atoms. Phys. Rev. B 2011, 84, 054415.

    Article  Google Scholar 

  20. Li, C.; Zhang, S.; Jin, W.; Lefkidis, G.; Wolfgang, H. Controllable spin-dynamics cycles and ERASE functionality on quasilinear molecular ions. Phys. Rev. B 2014, 184404, 2–6.

    Google Scholar 

  21. Guo, W.; Zhong, W.; Dai, Y.; Li, S. Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes. Phys. Rev. B 2005, 72, 075409.

    Article  Google Scholar 

  22. Guo, W.; Guo, Y.; Gao, H.; Zheng, Q.; Zhong, W. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Phys. Rev. Lett. 2003, 91, 125501.

    Article  Google Scholar 

  23. Chandratre, S.; Sharma, P. Coaxing graphene to be piezoelectric. Appl. Phys. Lett. 2012, 100, 023114

    Article  Google Scholar 

  24. Rasool, H. I.; Ophus, C.; Klug, W. S.; Zettl, A.; Gimzewski, J. K. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat. Commun. 2013, 4, 1–7.

    Article  Google Scholar 

  25. Liu, F.; Ming, P.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 2007, 76, 064120.

    Article  Google Scholar 

  26. Wei, Y.; Wang, B.; Wu, J.; Yang, R.; Dunn, M. L. Bending rigidity and Gaussian bending stiff ness of single-layered graphene. Nano Lett. 2013, 13, 26–30.

    Article  Google Scholar 

  27. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science (New York, N.Y.), 2008, 321, 385–388.

    Article  Google Scholar 

  28. Shenoy, V.; Reddy, C.; Ramasubramaniam, A.; Zhang, Y. Edge-stress-induced warping of graphene sheets and nanoribbons. Phys. Rev. Lett. 2008, 101, 245501.

    Article  Google Scholar 

  29. Bets, K. V.; Yakobson, B. I. Spontaneous twist and intrinsic instabilities of pristine graphene nanoribbons. Nano Res. 2010, 2, 161–166.

    Article  Google Scholar 

  30. Fasolino, A.; Los, J. H.; Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 2007, 6, 858–861.

    Article  Google Scholar 

  31. Zhang, Y.; Brar, V. W.; Girit, C.; Zettl, A.; Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat Phys. 2009, 5, 722–726.

    Article  Google Scholar 

  32. Lu, J.; Gomes, L. C.; Nunes, R. W.; Castro Neto, A. H.; Loh, K. P. Lattice relaxation at the interface of two-dimensional crystals: Graphene and hexagonal boron-nitride. Nano Lett. 2014, 14, 5133–5139.

    Article  Google Scholar 

  33. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 1995, 117, 1–42.

    Article  Google Scholar 

  34. Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Conden. Matter. 2002, 14, 783–802.

    Google Scholar 

  35. Stuart, S. J.; Tutein, A. B.; Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472.

    Article  Google Scholar 

  36. Liu, Y.; Bhowmick, S.; Yakobson, B. I. BN white graphene with “colorful” edges: The energies and morphology. Nano Lett. 2011, 11, 3113–3116.

    Article  Google Scholar 

  37. Timoshenko, S., Woinowsky-Krieger, S. Theory of Plates and Shells. McGraw-Hill: New York, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris I. Yakobson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alred, J.M., Zhang, Z., Hu, Z. et al. Interface-induced warping in hybrid two-dimensional materials. Nano Res. 8, 2015–2023 (2015). https://doi.org/10.1007/s12274-015-0713-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0713-2

Keywords

Navigation