Skip to main content
Log in

Transparent heaters based on highly stable Cu nanowire films

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In spite of the recent successful demonstrations of flexible and transparent film heaters, most heaters with high optical transmittance and low applied direct current (DC) voltage are silver nanowire (Ag NW)-based or silver grid-based. In this study, flexible and stretchable copper nanowire (Cu NW)-based transparent film heaters were fabricated through a solution-based process, in which a thin layer of hydrophobic polymers was encapsulated on the Cu NW films. The thin polymer layer protected the films from oxidation under harsh testing conditions, i.e., high temperature, high humidity, and acidic and alkaline environments. The films exhibited remarkable performance, a wide operating temperature range (up to 150 °C), and a high heating rate (14 °C/s). Defrosting and wearable thermotherapy demonstrations of the Cu NW film heaters were carried out to investigate their practicality. The Cu NW-based film heaters have potential as reliable and low-cost film heaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sorel, S.; Bellet, D.; Coleman, J. N. Relationship between material properties and transparent heater performance for both bulk-like and percolative nanostructured networks. ACS Nano 2014, 8, 4805–4814.

    Article  Google Scholar 

  2. Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

    Article  Google Scholar 

  3. Bae, J. J.; Lim, S. C.; Han, G. H.; Jo, Y. W.; Doung, D. L.; Kim, E. S.; Chae, S. J.; Huy, T. Q.; Van Luan, N.; Lee, Y. H. Heat dissipation of transparent graphene defoggers. Adv. Funct. Mater. 2012, 22, 4819–4826.

    Article  Google Scholar 

  4. Jang, Y.; Kim, J.; Byun, D. Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. J. Phys. D: Appl. Phys. 2013, 46, 155103.

    Article  Google Scholar 

  5. Yoon, Y. H.; Song, J.-W.; Kim, D.; Kim, J.; Park, J.-K.; Oh, S.-K.; Han, C.-S. Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 2007, 19, 4284–4287.

    Article  Google Scholar 

  6. Kang, T. J.; Kim, T.; Seo, S. M.; Park, Y. J.; Kim, Y. H. Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating. Carbon 2011, 49, 1087–1093.

    Article  Google Scholar 

  7. Jang, H.-S.; Jeon, S. K.; Nahm, S. H. The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes. Carbon 2011, 49, 111–116.

    Article  Google Scholar 

  8. Jung, D.; Kim, D.; Lee, K. H.; Overzet, L. J.; Lee, G. S. Transparent film heaters using multi-walled carbon nanotube sheets. Sensor. Actuat. A: Phys. 2013, 199, 176–180.

    Article  Google Scholar 

  9. Liu, P.; Zhou, D. L.; Wei, Y.; Jiang, K. L.; Wang, J. P.; Zhang, L.; Li, Q. Q.; Fan, S. S. Load characteristics of a suspended carbon nanotube film heater and the fabrication of a fast-response thermochromic display prototype. ACS Nano 2015, 9, 3753–3759.

    Article  Google Scholar 

  10. Sui, D.; Huang, Y.; Huang, L.; Liang, J. J.; Ma, Y. F.; Chen, Y. S. Flexible and transparent electrothermal film heaters based on graphene materials. Small 2011, 7, 3186–3192.

    Article  Google Scholar 

  11. Kang, J. M.; Kim, H.; Kim, K. S.; Lee, S.-K.; Bae, S. K.; Ahn, J.-H.; Kim, Y.-J.; Choi, J.-B.; Hong, B. H. Highperformance graphene-based transparent flexible heaters. Nano Lett. 2011, 11, 5154–5158.

    Article  Google Scholar 

  12. Cheong, H.-G.; Song, D.-W.; Park, J.-W. Transparent film heaters with highly enhanced thermal efficiency using silver nanowires and metal/metal-oxide blankets. Microelectron. Eng. 2015, 146, 11–18.

    Article  Google Scholar 

  13. Li, J. P.; Liang, J. J.; Jian, X.; Hu, W.; Li, J.; Pei, Q. B. A flexible and transparent thin film heater based on a silver nanowire/heat-resistant polymer composite. Macromol. Mater. Eng. 2014, 299, 1403–1409.

    Article  Google Scholar 

  14. Huang, Q. J.; Shen, W. F.; Fang, X. Z.; Chen, G. F.; Guo, J. C.; Xu, W.; Tan, R. Q.; Song, W. J. Highly flexible and transparent film heaters based on polyimide films embedded with silver nanowires. RSC Adv. 2015, 5, 45836–45842.

    Article  Google Scholar 

  15. Woo, J. S.; Han, J. T.; Jung, S.; Jang, J. I.; Kim, H. Y.; Jeong, H. J.; Jeong, S. Y.; Baeg, K. J.; Lee, G. W. Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes. Sci. Rep. 2014, 4, 4804.

    Google Scholar 

  16. Kim, A. Y.; Kim, M. K.; Hudaya, C.; Park, J. H.; Byun, D.; Lim, J. C.; Lee, J. K. Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters. Nanoscale 2016, 8, 3307–3313.

    Article  Google Scholar 

  17. Zhang, X.; Yan, X. B.; Chen, J. T.; Zhao, J. P. Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon 2014, 69, 437–443.

    Article  Google Scholar 

  18. Ji, S. L.; He, W. W.; Wang, K.; Ran, Y. X.; Ye, C. H. Thermal response of transparent silver nanowire/PEDOT:PSS film heaters. Small 2014, 10, 4951–4960.

    Article  Google Scholar 

  19. Chen, J. Y.; Chen, J.; Li, Y.; Zhou, W. X.; Feng, X. M.; Huang, Q. L.; Zheng, J. G.; Liu, R. Q.; Ma, Y. W.; Huang, W. Enhanced oxidation-resistant Cu-Ni core–shell nanowires: Controllable one-pot synthesis and solution processing to transparent flexible heaters. Nanoscale 2015, 7, 16874–16879.

    Article  Google Scholar 

  20. An, B. W.; Gwak, E.-J.; Kim, K.; Kim, Y.-C.; Jang, J.; Kim, J.-Y.; Park, J.-U. Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett. 2016, 16, 471–478.

    Article  Google Scholar 

  21. Stewart, I. E.; Rathmell, A. R.; Yan, L.; Ye, S. R.; Flowers, P. F.; You, W.; Wiley, B. J. Solution-processed copper-nickel nanowire anodes for organic solar cells. Nanoscale 2014, 6, 5980–5988.

    Article  Google Scholar 

  22. Zhang, D. Q.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

    Article  Google Scholar 

  23. Rathmell, A. R.; Bergin, S. M.; Hua, Y.-L.; Li, Z.-Y.; Wiley, B. J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 2010, 22, 3558–3563.

    Article  Google Scholar 

  24. Zhai, H. T.; Wang, R. R.; Wang, W. Q.; Wang, X.; Cheng, Y.; Shi, L. J.; Liu, Y. Q.; Sun, J. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. Nano Res. 2015, 8, 3205–3215.

    Article  Google Scholar 

  25. Wang, X.; Wang, R. R.; Shi, L. J.; Sun, J. Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes. Small 2015, 11, 4737–4744.

    Article  Google Scholar 

  26. Song, J. Z.; Li, J. H.; Xu, J. Y.; Zeng, H. B. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett. 2014, 14, 6298–6305.

    Article  Google Scholar 

  27. Luo, X. X.; Gelves, G. A.; Sundararaj, U.; Luo, J.-L. Silvercoated copper nanowires with improved anti-oxidation property as conductive fillers in low-density polyethylene. Can. J. Chem. Eng. 2013, 91, 630–637.

    Article  Google Scholar 

  28. Chen, Z. F.; Ye, S. R.; Stewart, I. E.; Wiley, B. J. Copper nanowire networks with transparent oxide shells that prevent oxidation without reducing transmittance. ACS Nano 2014, 8, 9673–9679.

    Article  Google Scholar 

  29. Deng, B.; Hsu, P.-C.; Chen, G. C.; Chandrashekar, B. N.; Liao, L.; Ayitimuda, Z.; Wu, J. X.; Guo, Y. F.; Lin, L.; Zhou, Y. et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 2015, 15, 4206–4213.

    Article  Google Scholar 

  30. Ahn, Y.; Jeong, Y.; Lee, D.; Lee, Y. Copper nanowire–graphene core–shell nanostructure for highly stable transparent conducting electrodes. ACS Nano 2015, 9, 3125–3133.

    Article  Google Scholar 

  31. Shi, L. J.; Wang, R. R.; Zhai, H. T.; Liu, Y. Q.; Gao, L.; Sun, J. A long-term oxidation barrier for copper nanowires: Graphene says yes. Phys. Chem. Chem. Phys. 2015, 17, 4231–4236.

    Google Scholar 

  32. Hong, S.; Lee, H.; Lee, J.; Kwon, J.; Han, S.; Suh, Y. D.; Cho, H.; Shin, J.; Yeo, J.; Ko, S. H. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 2015, 27, 4744–4751.

    Article  Google Scholar 

  33. Wang, R. R.; Zhai, H. T.; Wang, T.; Wang, X.; Cheng, Y.; Shi, L. J.; Sun, J. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Res. 2016, 9, 2138–2148.

    Article  Google Scholar 

  34. Sellinger, A. T.; Wang, D. H.; Tan, L.-S.; Vaia, R. A. Electrothermal polymer nanocomposite actuators. Adv. Mater. 2010, 22, 3430–3435.

    Article  Google Scholar 

  35. Lee, S. M.; Lee, J. H.; Bak, S.; Lee, K.; Li, Y.; Lee, H. Hybrid windshield-glass heater for commercial vehicles fabricated via enhanced electrostatic interactions among a substrate, silver nanowires, and an over-coating layer. Nano Res. 2015, 8, 1882–1892.

    Article  Google Scholar 

  36. Choi, S.; Park, J.; Hyun, W.; Kim, J.; Kim, J.; Lee, Y. B.; Song, C.; Hwang, H. J.; Kim, J. H.; Hyeon, T. et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 2015, 9, 6626–6633.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ranran Wang or Jing Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, H., Wang, R., Wang, X. et al. Transparent heaters based on highly stable Cu nanowire films. Nano Res. 9, 3924–3936 (2016). https://doi.org/10.1007/s12274-016-1261-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1261-0

Keywords

Navigation