Skip to main content
Log in

An overview of conductive composite hydrogels for flexible electronic devices

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Conductive hydrogels (CHs) have shown great potential in smart wearable devices and energy storage due to their unique advantages, such as the mechanical properties and physiological characteristics similar to human skins and tissues (stretchability, low modulus, flexibility, biocompatibility, etc.), the function and structure design with diversity, and the transformation of external stimuli (force, deformation, temperature, etc.) into electronic signals. Currently, a large number of CHs have been developed and designed for specific applications. In this review, we first focus on the recent progress on the synthesis strategies of all kinds of CHs. Their categories involve conductive nanomaterial-based, free ionic-based, and conductive polymer-based CHs. Whereafter, the promising applications of CHs in flexible electronic devices are discussed in detail. The relevant applications include wearable strain sensors, bioelectronics, epidermal patch electrodes, temperature sensors, triboelectric nanogenerators (TENG), energy storage devices, and gas sensors. Finally, we also discuss the future research direction of CHs and the possible challenges in the field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be available upon request.

References

  1. Zhang JL, Huang WM, Gao G, Fu J, Zhou Y, Salvekar AV, Venkatraman SS, Wong YS, Tay KH, Birch WR (2014) Shape memory/change effect in a double network nanocomposite tough hydrogel. Eur Polym J 58:41–51

    Article  CAS  Google Scholar 

  2. Wang L, Xu T, Zhang X (2021) Multifunctional conductive hydrogel-based flexible wearable sensors. Trends Anal Chem 134:116130

    Article  CAS  Google Scholar 

  3. Yang R, Chen X, Zheng Y, Chen K, Zeng W, Wu X (2022) Recent advances in the 3D printing of electrically conductive hydrogels for flexible electronics. J Mater Chem C 10:5380–5399

    Article  CAS  Google Scholar 

  4. Song B, Ren Z, Gu H (2023) Totally dynamically cross-linked dual-network conductive hydrogel with superb and rapid self-healing ability for motion detection sensors. Mater Today Commun 35:105919

    Article  CAS  Google Scholar 

  5. Huang K, Wu Y, Liu J, Chang G, Pan X, Weng X, Wang Y, Lei M (2022) A double-layer CNTs/PVA hydrogel with high stretchability and compressibility for human motion detection. Eng Sci 17:319–327

    CAS  Google Scholar 

  6. Huang J, Wang L, Jin Y, Lu P, Wang LL, Bai N, Li G, Zhu P, Wang Y, Zhang J, Wu Z, Guo CF (2020) Tuning the rigidity of silk fibroin for the transfer of highly stretchable electronics. Adv Funct Mater 30:2001518

    Article  CAS  Google Scholar 

  7. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu F, Liu X, Chen F, Fu Q (2021) Mussel-inspired chemistry: a promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 123:101472

    Article  CAS  Google Scholar 

  9. Qiu X, Liu J, Zhou B, Zhang X (2023) Bioinspired bimodal mechanosensors with real-time, visualized information display for intelligent control. Adv Funct Mater 33:2300321

    Article  CAS  Google Scholar 

  10. Surmenev RA, Surmeneva MA (2023) The influence of the flexoelectric effect on materials properties with the emphasis on photovoltaic and related applications: a review. Mater Today 67:256–298

    Article  Google Scholar 

  11. Hao Y, Leng Z, Yu C, Xie P, Meng S, Zhou L, Li Y, Liang G, Li X, Liu C (2023) Ultra-lightweight hollow bowl-like carbon as microwave absorber owning broad band and low filler loading. Carbon 212:118156

    Article  CAS  Google Scholar 

  12. Wei J, Dai L, Xi X, Chen Z, Zhu M, Dong C, Ding S, Lei T (2024) Robust, ultrathin and flexible electromagnetic interference shielding paper designed with all-polysaccharide hydrogel and MXene. Carbohydr Polym 323:121447

    Article  CAS  PubMed  Google Scholar 

  13. Wu Y, Chen E, Weng X, He Z, Chang G, Pan X, Liu J, Huang K, Huang K, Lei M (2022) Conductive polyvinyl alcohol/silver nanoparticles hydrogel sensor with large draw ratio, high sensitivity and high stability for human behavior monitoring. Eng Sci 18:113–120

    CAS  Google Scholar 

  14. Peng Q, Chen J, Wang T, Peng X, Liu J, Wang X, Wang J, Zeng H (2020) Recent advances in designing conductive hydrogels for flexible electronics. InfoMater 2:843–865

    Article  CAS  Google Scholar 

  15. Yuk H, Lu B, Zhao X (2019) Hydrogel bioelectronics. Chem Soc Rev 48:1642–1667

    Article  CAS  PubMed  Google Scholar 

  16. Walker BW, Lara RP, Mogadam E, Yu CH, Kimball W, Annabi N (2019) Rational design of microfabricated electroconductive hydrogels for biomedical applications. Prog Polym Sci 92:135–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu Y, Luo Y, Cuthbert TJ, Shokurov AV, Chu PK, Feng SP, Menon C (2022) Hydrogels as soft ionic conductors in flexible and wearable triboelectric nanogenerators. Adv Sci 9:2106008

    Article  CAS  Google Scholar 

  18. Rong Q, Lei W, Liu M (2018) Conductive hydrogels as smart materials for flexible electronic devices. Chem Eur J 24:16930–16943

    Article  CAS  PubMed  Google Scholar 

  19. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydr Polym 309:120678

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Zhang G, Huang X, He J, Bai Y, Zhang L (2022) Antifreezing and nondrying sensors of ionic hydrogels with a double-layer structure for highly sensitive motion monitoring. ACS Appl Mater Interfaces 14:30256–30267

    Article  CAS  PubMed  Google Scholar 

  21. Chen Z, Zhang T, Chen C-T, Yang S, Lv Z, Cao L, Ren J, Shao Z, Jiang L, -b. and Ling S, (2022) Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation. Mater Horiz 9:1735–1749

    Article  CAS  PubMed  Google Scholar 

  22. Hua J, Björling M, Larsson R, Shi Y (2021) Friction control of chitosan-Ag hydrogel by silver ion. ES Mater Manuf 16:30–36

    Google Scholar 

  23. Wang C, Jiang X, Kim HJ, Zhang S, Zhou X, Chen Y, Ling H, Xue Y, Chen Z, Qu M, Ren L, Zhu J, Libanori A, Zhu Y, Kang H, Ahadian S, Dokmeci MR, Servati P, He X, Gu Z, Sun W, Khademhosseini A (2022) Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing. Biomaterials 285:121479

    Article  CAS  PubMed  Google Scholar 

  24. Wu H, Zhao Q, Liang Y, Ren L, Ren L (2022) Hypersensitized strain sensors based on conductive hydrogels with excellent conductivity and good mechanical properties. ACS Sustain Chem Eng 10:4425–4437

    Article  CAS  Google Scholar 

  25. Yuan G, Wan T, BaQais A, Mu Y, Cui D, Amin MA, Li X, Xu BB, Zhu X, Algadi H, Li H, Wasnik P, Lu N, Guo Z, Wei H, Cheng B (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101

    Article  CAS  Google Scholar 

  26. Hu Y, Chen Z, Wang H, Guo J, Cai J, Chen X, Wei H, Qi J, Wang Q, Liu HJA, n, (2022) Conductive nerve guidance conduits based on morpho butterfly wings for peripheral nerve repair. ACS Nano 16:1868–1879

    Article  CAS  PubMed  Google Scholar 

  27. Yan L, Zhou T, Han L, Zhu M, Cheng Z, Li D, Ren F, Wang K, Lu X (2021) Conductive cellulose bio-nanosheets assembled biostable hydrogel for reliable bioelectronics. Adv Funct Mater 31:2010465

    Article  CAS  Google Scholar 

  28. Kadumudi FB, Hasany M, Pierchala MK, Jahanshahi M, Taebnia N, Mehrali M, Mitu CF, Shahbazi MA, Zsurzsan TG, Knott A, Andresen TL, Dolatshahi-Pirouz A (2021) The manufacture of unbreakable bionics via multifunctional and self-healing silk-graphene hydrogels. Adv Mater 33:2100047

    Article  CAS  Google Scholar 

  29. Li Y, He J, Zhou J, Li Z, Liu L, Hu S, Guo B, Wang W (2022) A conductive photothermal non-swelling nanocomposite hydrogel patch accelerating bone defect repair. Biomater Sci 10:1326–1341

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Xie W-Y, Zhou F-X, Chen L, Zhou M, Wang G-X, Xu W, Liang E (2021) Three-dimensional nitrogen-doped graphene hydrogel-based flexible all-solid-state supercapacitors. J Mater Res 36:376–386

    Article  CAS  Google Scholar 

  31. Dong J, Wang D, Peng Y, Zhang C, Lai F, He G, Ma P, Dong W, Huang Y, Parkin IP, Liu T (2022) Ultra-stretchable and superhydrophobic textile-based bioelectrodes for robust self-cleaning and personal health monitoring. Nano Energy 97:107160

    Article  CAS  Google Scholar 

  32. Han L, Qu R, Chen D, Liu L, Xu H, Zhang Z, Zhao Y, Song X (2022) Carbon nanotube anchored organic hydrogel for soft sensors. Macromol Mater Eng 9:2100890

    Article  Google Scholar 

  33. Zhang YZ, El-Demellawi JK, Jiang Q, Ge G, Liang H, Lee K, Dong X, Alshareef HN (2020) MXene hydrogels: fundamentals and applications. Chem Soc Rev 49:7229–7251

    Article  CAS  PubMed  Google Scholar 

  34. Zhao K, Lee JW, Yu ZG, Jiang W, Oh JW, Kim G, Han H, Kim Y, Lee K, Lee S, Kim H, Kim T, Lee CE, Lee H, Jang J, Park JW, Zhang YW, Park C (2023) Humidity-tolerant moisture-driven energy generator with MXene aerogel-organohydrogel bilayer. ACS Nano 17:5472–5485

    Article  CAS  PubMed  Google Scholar 

  35. He Y, Deng Z, Wang YJ, Zhao Y, Chen L (2022) Polysaccharide/Ti3C2Tx MXene adhesive hydrogels with self-healing ability for multifunctional and sensitive sensors. Carbohydr Polym 291:119572

    Article  CAS  PubMed  Google Scholar 

  36. Chen K, Hu Y, Wang F, Liu M, Liu P, Li C, Yu Y, Xiao X, Feng Q (2022) Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors. Colloids Surf A Physicochem Eng Aspects 645:128897

    Article  CAS  Google Scholar 

  37. Geng L, Liu W, Fan B, Wu J, Shi S, Huang A, Hu J, Peng X (2023) Anisotropic double-network hydrogels integrated superior performance of strength, toughness and conductivity for flexible multi-functional sensors. Chem Eng J 462:142226

    Article  CAS  Google Scholar 

  38. Xue P, Valenzuela C, Ma S, Zhang X, Ma J, Chen Y, Xu X, Wang L (2023) Highly conductive MXene/PEDOT: PSS-integrated poly(isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators. Adv Funct Mater 33:2214867

    Article  CAS  Google Scholar 

  39. Mo F, Li Q, Liang G, Zhao Y, Wang D, Huang Y, Wei J, Zhi C (2021) A self-healing crease-free supramolecular all-polymer supercapacitor. Adv Sci 8:2100072

    Article  CAS  Google Scholar 

  40. Gong Q, Li Y, Liu X, Xia Z, Yang Y (2020) A facile preparation of polyaniline/cellulose hydrogels for all-in-one flexible supercapacitor with remarkable enhanced performance. Carbohydr Polym 245:116611

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Y, Zhang B, Yao B, Qiu Y, Peng Z, Zhang Y, Alsaid Y, Frenkel I, Youssef K, Pei Q, He X (2020) Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 3:1196–1210

    Article  Google Scholar 

  42. Li G, Huang K, Deng J, Guo M, Cai M, Zhang Y, Guo CF (2022) Highly conducting and stretchable double-network hydrogel for soft bioelectronics. Adv Mater 34:2200261

    Article  CAS  Google Scholar 

  43. Shen J, Dai Y, Xia F, Zhang X (2022) Role of divalent metal ions in the function and application of hydrogels. Prog Polym Sci 135:101622

    Article  CAS  Google Scholar 

  44. Ling Q, Ke T, Liu W, Ren Z, Zhao L, Gu H (2021) Tough, repeatedly adhesive, cyclic compression-stable, and conductive dual-network hydrogel sensors for human health monitoring. Ind Eng Chem Res 60:18373–18383

    Article  CAS  Google Scholar 

  45. Qin C, Lu A (2021) Flexible, anti-freezing self-charging power system composed of cellulose based supercapacitor and triboelectric nanogenerator. Carbohydr Polym 274:118667

    Article  CAS  PubMed  Google Scholar 

  46. Chen M, Qian X, Cai J, Zhou J, Lu A (2022) Electronic skin based on cellulose/KCl/sorbitol organohydrogel. Carbohydr Polym 292:119645

    Article  CAS  PubMed  Google Scholar 

  47. Tan Y, Zhang Y, Ge Z, Zheng J, Liang S, Ma Y, Wen M, Li J, Sun Z, Liu C, Xu S, Zhang Y (2022) Physical cross-linkage constructed supramolecular conductive hydrogel as sustainable and remolded epidermal electronics. ACS Appl Polym Mater 4:2585–2594

    Article  CAS  Google Scholar 

  48. Fu H, Wang B, Li J, Xu J, Li J, Zeng J, Gao W, Chen K (2022) A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe3+ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor. Mater Horiz 9:1412–1421

    Article  CAS  PubMed  Google Scholar 

  49. Tran VT, Mredha MTI, Pathak SK, Yoon H, Cui J, Jeon I (2019) Conductive tough hydrogels with a staggered ion-coordinating structure for high self-recovery rate. ACS Appl Mater Interfaces 11:24598–24608

    Article  CAS  PubMed  Google Scholar 

  50. Wu Z, Shi W, Ding H, Zhong B, Huang W, Zhou Y, Gui X, Xie X, Wu J (2021) Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J Mater Chem C 9:13668–13679

    Article  CAS  Google Scholar 

  51. Kim M, Lee SY, Kim J, Choi C, Lansac Y, Ahn H, Park S, Jang YH, Lee SH, Lee BH (2023) Protic ionic liquids for intrinsically stretchable conductive polymers. ACS Appl Mater Interfaces 15:3202–3213

    Article  CAS  PubMed  Google Scholar 

  52. Yao X, Zhang S, Qian L, Wei N, Nica V, Coseri S, Han F (2022) Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv Funct Mater 32:204565

    Article  Google Scholar 

  53. Xiang S, Zheng F, Chen S, Lu Q (2021) Self-healable, recyclable, and ultrastrong adhesive ionogel for multifunctional strain sensor. ACS Appl Mater Interfaces 13:20653–20661

    Article  CAS  PubMed  Google Scholar 

  54. He X, Dong J, Zhang X, Bai X, Zhang C, Wei D (2022) Self-healing, anti-fatigue, antimicrobial ionic conductive hydrogels based on choline-amino acid polyionic liquids for multi-functional sensors. Chem Eng J 435:135168

    Article  CAS  Google Scholar 

  55. Zhou Y, Fei X, Tian J, Xu L, Li Y (2022) A ionic liquid enhanced conductive hydrogel for strain sensing applications. J Colloid Interface Sci 606:192–203

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Li Q, Li K, Sun X, Wang Y, Zhuang T, Yan J, Wang H (2022) Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv Mater 34:2109904

    Article  CAS  Google Scholar 

  57. Pan X, Wang Q, Benetti D, Ni Y, Rosei F (2022) Polyelectrolyte hydrogel: a versatile platform for mechanical-electric conversion and self-powered sensing. Nano Energy 103:107718

    Article  CAS  Google Scholar 

  58. Zhang M, Yang Y, Li M, Shang Q, Xie R, Yu J, Shen K, Zhang Y, Cheng Y (2023) Toughening double-network hydrogels by polyelectrolytes. Adv Mater 35:2301551

    Article  CAS  Google Scholar 

  59. Wu J, Xu D, Feng Z, Zhu L, Dong C, Qiu J (2022) Stretchable and highly sensitive polyelectrolyte microgels-enhanced polyacrylamide hydrogel composite for strain sensing. Compos Commun 35:101332

    Article  Google Scholar 

  60. Wang Q, Lan J, Hua Z, Ma X, Chen L, Pan X, Li Y, Cao S, Ni Y (2021) An oriented Fe3+-regulated lignin-based hydrogel with desired softness, conductivity, stretchability, and asymmetric adhesiveness towards anti-interference pressure sensors. Int J Biol Macromol 184:282–288

    Article  PubMed  Google Scholar 

  61. Lee CJ, Wu H, Hu Y, Young M, Wang H, Lynch D, Xu F, Cong H, Cheng G (2018) Ionic conductivity of polyelectrolyte hydrogels. ACS Appl Mater Interfaces 10:5845–5852

    Article  CAS  PubMed  Google Scholar 

  62. Ying B, Wu Q, Li J, Liu X (2020) An ambient-stable and stretchable ionic skin with multimodal sensation. Mater Horiz 7:477–488

    Article  CAS  Google Scholar 

  63. Zhang M, Yang Y, Li M, Shang Q, Xie R, Yu J, Shen K, Zhang Y, Cheng Y (2023) Toughening double-network hydrogels by polyelectrolytes. Adv Mater 35:2301551

    Article  CAS  Google Scholar 

  64. Yang WJ, Zhang R, Guo X, Ma R, Liu Z, Wang T, Wang L (2022) Supramolecular polyelectrolyte hydrogel based on conjoined double-networks for multifunctional applications. J Mater Chem A 10:23649–23665

    Article  CAS  Google Scholar 

  65. Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118:6766–6843

    Article  CAS  PubMed  Google Scholar 

  66. Qian C, Li Y, Liu L, Chen C, Han L (2023) NIR responsive and conductive PNIPAM/PANI nanocomposite hydrogels with high stretchability for self-sensing actuators. J Mater Chem C 11:6741–6749

    Article  CAS  Google Scholar 

  67. Peng X, Wang W, Yang W, Chen J, Peng Q, Wang T, Yang D, Wang J, Zhang H, Zeng H (2022) Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors. J Colloid Interface Sci 618:111–120

    Article  CAS  PubMed  Google Scholar 

  68. Zhang D, Tang Y, Zhang Y, Yang F, Liu Y, Wang X, Yang J, Gong X, Zheng J (2020) Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. J Mater Chem A 8:20474–20485

    Article  CAS  Google Scholar 

  69. Bian Z, Li Y, Sun H, Shi M, Zheng Y, Liu H, Liu C, Shen C (2023) Transparent, intrinsically stretchable cellulose nanofiber-mediated conductive hydrogel for strain and humidity sensing. Carbohydr Polym 301:120300

    Article  CAS  PubMed  Google Scholar 

  70. Zhu S, Yu C, Zhao M, Liu N, Chen Z, Liu J, Li G, Deng Y, Sai X, Huang H, Guo H, Chen C, Wang X, Zheng Y, Sun T, Chen J, Zhuang J, Zhu P (2022) Histatin-1 loaded multifunctional, adhesive and conductive biomolecular hydrogel to treat diabetic wound. Int J Biol Macromol 209:1020–1031

    Article  CAS  PubMed  Google Scholar 

  71. Yao B, Ye Z, Lou X, Yan Q, Han Z, Dong Y, Qu S, Wang Z (2022) Wireless rehabilitation training sensor arrays made with hot screen-imprinted conductive hydrogels with a low percolation threshold. ACS Appl Mater Interfaces 14:12734–12747

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Liao J, Wu X, Zhu F, Liu Y, Qin Y-X, Chen W, Zheng Q (2022) Thermal and NIR controlled flexible switching devices using a smart conductive composite hydrogel approach. Compos Sci Technol 222:109371

    Article  CAS  Google Scholar 

  73. Du J, Zhu W, Yang Q, She X, Wu H, Tsou C, Manuel DG, Huang H (2022) Strong conductive hybrid hydrogel electrode based on inorganic hybrid crosslinking. Colloid Polym Sci 300:111–124

    Article  CAS  Google Scholar 

  74. Cong J, Fan Z, Pan S, Tian J, Lian W, Li S, Wang S, Zheng D, Miao C, Ding W, Sun T, Luo T (2021) Polyacrylamide/chitosan-based conductive double network hydrogels with outstanding electrical and mechanical performance at low temperatures. ACS Appl Mater Interfaces 13:34942–34953

    Article  CAS  PubMed  Google Scholar 

  75. Prameswati A, Nurmaulia ES, A, Han J. W, Wibowo A. F, Kim J. H, Sembiring Y. S. B, Park J, Lee J, Lee A. Y, Song M. H, Kim S, Lim D. C, Eom Y, Heo S, Moon M. W, Kim M. S. and Kim Y. H, (2023) Self-healable conductive hydrogels with high stretchability and ultralow hysteresis for soft electronics. ACS Appl Mater Interfaces 15:24648–24657

    Article  CAS  PubMed  Google Scholar 

  76. Zhang M, Wang Y, Liu K, Liu Y, Xu T, Du H, Si C (2023) Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT: PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Carbohydr Polym 305:120567

    Article  CAS  PubMed  Google Scholar 

  77. Zou H, Yi P, Xu W, Cai H, He J, Sun X, Li X, Chen C, Deng G, Yuan Y, Li Z, Fang M, Shui J, Liu X, Yu R (2023) Rapid room-temperature polymerization strategy to prepare organic/inorganic hybrid conductive organohydrogel for terahertz wave responsiveness. Chem Eng J 461:141856

    Article  CAS  Google Scholar 

  78. Yin T, Cheng Y, Hou Y, Sun L, Ma Y, Su J, Zhang Z, Liu N, Li L, Gao Y (2022) 3D porous structure in MXene/PANI foam for a high-performance flexible pressure sensor. Small 18:2204806

    Article  CAS  Google Scholar 

  79. Chang X, Lin CW, Huang A, El-Kady MF, Kaner RB (2023) Molecular engineering of hierarchical conducting polymer composites for highly stable supercapacitors. Nano Lett 23:3317–3325

    Article  CAS  PubMed  Google Scholar 

  80. Yang J, Guo M, Feng L, Hao J, Guo Y, Li Z, Liu S, Qin G, Sun G, Chen Q (2023) Swelling-resistant microgel-reinforced hydrogel polymer electrolytes for flexible all-in-one supercapacitors with high performances. J Mater Chem C. https://doi.org/10.1039/d3tc00160a

    Article  Google Scholar 

  81. Liu Y, Abdiryim T, Jamal R, Liu X, Fan N, Niyaz M, Zhang Y (2023) High-performance quasi−solid−state hybrid supercapacitor for self−powered strain sensor based on poly (3, 4-propylenedioxythiophene)/NiS2@Hollow carbon sphere composite and sulfonated cellulose hydrogel electrolyte. Appl Surf Sci 608:154989

    Article  CAS  Google Scholar 

  82. Zhang Y, Tan Y, Lao J, Gao H, Yu J (2023) Hydrogels for flexible electronics. ACS Nano 05:13–48

    Google Scholar 

  83. Liu D, Huyan C, Wang Z, Guo Z, Zhang X, Torun H, Mulvihill D, Xu BB, Chen F (2023) Conductive polymer based hydrogels and their application in wearable sensors: a review. Mater Horiz 11:48–52

    Google Scholar 

  84. Li Q, Tian B, Liang J, Wu W (2023) Functional conductive hydrogel: from performance to flexible sensors applications. Mater Chem Front 11:48–57

    CAS  Google Scholar 

  85. Song B, Fan X, Gu H (2023) Chestnut-tannin-crosslinked, antibacterial, antifreezing, conductive organohydrogel as a strain sensor for motion monitoring, flexible keyboards, and velocity monitoring. ACS Appl Mater Interfaces 15:2147–2162

    Article  CAS  PubMed  Google Scholar 

  86. Yu C, Yue Z, Zhang H, Shi M, Yao M, Yu Q, Liu M, Guo B, Zhang H, Tian L, Sun H, Yao F, Li J (2023) Ultra-histocompatible and electrophysiological-adapted PEDOT-based hydrogels designed for cardiac repair. Adv Funct Mater 33:2211023

    Article  CAS  Google Scholar 

  87. Ling Q, Fan X, Ling M, Liu J, Zhao L, Gu H (2023) Collagen-based organohydrogel strain sensor with self-healing and adhesive properties for detecting human motion. ACS Appl Mater Interfaces 15:12350–12362

    Article  CAS  PubMed  Google Scholar 

  88. Lyu J, Zhou Q, Wang H, Xiao Q, Qiang Z, Li X, Wen J, Ye C, Zhu M (2023) Mechanically strong, freeze-resistant, and ionically conductive organohydrogels for flexible strain sensors and batteries. Adv Sci 10:e2206591

    Article  Google Scholar 

  89. Feng Y, Wang S, Li Y, Ma W, Zhang G, Yang M, Li H, Yang Y, Long Y (2023) Entanglement in smart hydrogels: fast response time, anti-freezing and anti-drying. Adv Funct Mater 33:2211027

    Article  CAS  Google Scholar 

  90. Huang S, He S, Li Y, Wang S, Hou X (2023) Hydrogen bond acceptor lined hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with low temperature adaptability. Chem Eng J 464:142607

    Article  CAS  Google Scholar 

  91. Shu L, Wang Z, Zhang XF, Yao J (2023) Highly conductive and anti-freezing cellulose hydrogel for flexible sensors. Int J Biol Macromol 230:123425

    Article  CAS  PubMed  Google Scholar 

  92. Li Y, Yang D, Wu Z, Gao F-L, Gao X-Z, Zhao H-Y, Li X, Yu Z-Z (2023) Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for reliable strain and pressure sensors. Nano Energy 109:108324

    Article  CAS  Google Scholar 

  93. Wang C, Liu Y, Qu X, Shi B, Zheng Q, Lin X, Chao S, Wang C, Zhou J, Sun Y, Mao G, Li Z (2023) Ultra-stretchable and fast self-healing ionic hydrogel in cryogenic environments for artificial nerve fiber. Adv Mater 35:2105416

    Google Scholar 

  94. Yin H, Liu F, Abdiryim T, Liu X (2023) Self-healing hydrogels: from synthesis to multiple applications. ACS Matter Let 5:1787–1830

    Article  CAS  Google Scholar 

  95. Long T, Li Y, Fang X, Sun J (2018) Salt-mediated polyampholyte hydrogels with high mechanical strength, excellent self-healing property, and satisfactory electrical conductivity. Adv Funct Mater 28:1804416

    Article  Google Scholar 

  96. Li X, Jiang M, Du Y, Ding X, Xiao C, Wang Y, Yang Y, Zhuo Y, Zheng K, Liu X, Chen L, Gong Y, Tian X, Zhang X (2023) Self-healing liquid metal hydrogel for human-computer interaction and infrared camouflage. Mater Horiz 11:29–39

    Google Scholar 

  97. Cui C, Liu W (2021) Recent advances in wet adhesives: adhesion mechanism, design principle and applications. Prog Polym Sci 116:101388

    Article  CAS  Google Scholar 

  98. Zhao Y, Yi B, Hu J, Zhang D, Li G, Lu Y, Zhou Q (2023) Double cross-linked biomimetic hyaluronic acid-based hydrogels with thermo-stimulated self-contraction and tissue adhesiveness for accelerating post-wound closure and wound healing. Adv Funct Mater 33:2300710

    Article  CAS  Google Scholar 

  99. Guo WY, Mai T, Huang LZ, Zhang W, Qi MY, Yao C, Ma MG (2023) Multifunctional MXene conductive zwitterionic hydrogel for flexible wearable sensors and arrays. ACS Appl Mater Interfaces 15:24933–24947

    Article  CAS  PubMed  Google Scholar 

  100. Hao S, Dai R, Fu Q, Wang Y, Zhang X, li H, liu X, Yang J, (2023) A robust and adhesive hydrogel enables interfacial coupling for continuous temperature monitoring. Adv Funct Mater 33:2302840

    Article  CAS  Google Scholar 

  101. Xu C, Chang Y, Wu P, Liu K, Dong X, Nie A, Mu C, Liu Z, Dai H, Luo Z (2021) Two-dimensional-germanium phosphide-reinforced conductive and biodegradable hydrogel scaffolds enhance spinal cord injury repair. Adv Funct Mater 29:2104440

    Article  Google Scholar 

  102. Li W, Liu J, Wei J, Yang Z, Ren C, Li B (2023) Recent progress of conductive hydrogel fibers for flexible electronics: fabrications, applications, and perspectives. Adv Funct Mater 33:2213485

    Article  CAS  Google Scholar 

  103. Hong Y, Lin Z, Yang Y, Jiang T, Shang J, Luo Z (2022) Biocompatible conductive hydrogels: applications in the field of biomedicine. Int J Mol Sci 9:23

    Google Scholar 

  104. Hu W, Chen Z, Chen X, Feng K, Hu T, Huang B, Tang J, Wang G, Liu S, Yang G, Wang Z (2023) Double-network cellulose-based hybrid hydrogels with favourable biocompatibility and antibacterial activity for wound healing. Carbohydr Polym 319:121193

    Article  CAS  PubMed  Google Scholar 

  105. Gan D, Huang Z, Wang X, Xu D, Rao S, Wang K, Ren F, Jiang L, Xie C, Lu X (2023) Bioadhesive and electroactive hydrogels for flexible bioelectronics and supercapacitors enabled by a redox-active core-shell PEDOT@PZIF-71 system. Mater Horiz 11:30361–30372

    Google Scholar 

  106. Zhu T, Ni Y, Biesold GM, Cheng Y, Ge M, Li H, Huang J, Lin Z, Lai Y (2022) Recent advances in conductive hydrogels: classifications, properties, and applications. Chem Soc Rev 52:473–509

    Article  Google Scholar 

  107. Wen J, Tang J, Ning H, Hu N, Zhu Y, Gong Y, Xu C, Zhao Q, Jiang X, Hu X, Lei L, Wu D, Huang T (2021) Multifunctional ionic skin with sensing, UV-filtering, water-retaining, and anti-freezing capabilities. Adv Funct Mater 31:2011176

    Article  CAS  Google Scholar 

  108. Feng Y, Liu H, Zhu W, Guan L, Yang X, Zvyagin AV, Zhao Y, Shen C, Yang B, Lin Q (2021) Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays. Adv Funct Mater 31:2105264

    Article  CAS  Google Scholar 

  109. Jiao Y, Lu Y, Lu K, Yue Y, Xu X, Xiao H, Li J, Han J (2021) Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application. J Colloid Interface Sci 597:171–181

    Article  CAS  PubMed  Google Scholar 

  110. Zhang Q, Liu X, Zhang J, Duan L, Gao G (2021) A highly conductive hydrogel driven by phytic acid towards a wearable sensor with freezing and dehydration resistance. J Mater Chem A 9:22615–22625

    Article  CAS  Google Scholar 

  111. Li S-N, Yu Z-R, Guo B-F, Guo K-Y, Li Y, Gong L-X, Zhao L, Bae J, Tang L-C (2021) Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing. Nano Energy 90:106502

    Article  CAS  Google Scholar 

  112. Zhou L, Wang Z, Wu C, Cong Y, Zhang R, Fu J (2020) Highly sensitive pressure and strain sensors based on stretchable and recoverable ion-conductive physically cross-linked double-network hydrogels. ACS Appl Mater Interfaces 12:51969–51977

    Article  CAS  PubMed  Google Scholar 

  113. Yin H, Liu F, Abdiryim T, Chen J, Liu X (2024) Sodium carboxymethyl cellulose and MXene reinforced multifunctional conductive hydrogels for multimodal sensors and flexible supercapacitors. Carbohydr Polym 327:121677

    Article  CAS  PubMed  Google Scholar 

  114. Liu C, Zhang R, Li P, Qu J, Chao P, Mo Z, Yang T, Qing N, Tang L (2022) Conductive hydrogels with ultrastretchability and adhesiveness for flame- and cold-tolerant strain sensors. ACS Appl Mater Interfaces 14:26088–26098

    Article  CAS  PubMed  Google Scholar 

  115. Hao S, Shao C, Meng L, Cui C, Xu F, Yang J (2020) Tannic acid-silver dual catalysis induced rapid polymerization of conductive hydrogel sensors with excellent stretchability, self-adhesion, and strain-sensitivity properties. ACS Appl Mater Interfaces 12:56509–56521

    Article  CAS  PubMed  Google Scholar 

  116. He P, Guo R, Hu K, Liu K, Lin S, Wu H, Huang L, Chen L, Ni Y (2021) Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation. Chem Eng J 414:128726

    Article  CAS  Google Scholar 

  117. Sun X, Liang Y, Ye L, Liang H (2021) An extremely tough and ionic conductive natural-polymer-based double network hydrogel. J Mater Chem B 9:7751–7759

    Article  CAS  PubMed  Google Scholar 

  118. Ling Q, Liu W, Liu J, Zhao L, Ren Z, Gu H (2022) Highly sensitive and robust polysaccharide-based composite hydrogel sensor integrated with underwater repeatable self-adhesion and rapid self-healing for human motion detection. ACS Appl Mater Interfaces 14:24741–24754

    Article  CAS  PubMed  Google Scholar 

  119. Wang Z, Wei H, Huang Y, Wei Y, Chen J (2023) Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chem Soc Rev 52:2992–3034

    Article  CAS  PubMed  Google Scholar 

  120. Zheng C, Lu K, Lu Y, Zhu S, Yue Y, Xu X, Mei C, Xiao H, Wu Q, Han J (2020) A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr Polym 250:116905

    Article  CAS  PubMed  Google Scholar 

  121. Lu X, Si Y, Zhang S, Yu J, Ding B (2021) In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv Funct Mater 31:2103117

    Article  CAS  Google Scholar 

  122. Liu H, Wang X, Cao Y, Yang Y, Yang Y, Gao Y, Ma Z, Wang J, Wang W, Wu D (2020) Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links. ACS Appl Mater Interfaces 12:25334–25344

    Article  CAS  PubMed  Google Scholar 

  123. Wei J, Zheng Y, Chen T (2021) A fully hydrophobic ionogel enables highly efficient wearable underwater sensors and communicators. Mater Horiz 8:2761–2770

    Article  CAS  PubMed  Google Scholar 

  124. Zhang H, Guo J, Wang Y, Sun L, Zhao Y (2021) Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Adv Sci 8:2102156

    Article  CAS  Google Scholar 

  125. Zhou Y, Wan C, Yang Y, Yang H, Wang S, Dai Z, Ji K, Jiang H, Chen X, Long Y (2019) Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv Funct Mater 29:1806220

    Article  Google Scholar 

  126. Wang Y, Tebyetekerwa M, Liu Y, Wang M, Zhu J, Xu J, Zhang C, Liu T (2021) Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chem Eng J 420:127637

    Article  CAS  Google Scholar 

  127. Wei H, Wang Z, Zhang H, Huang Y, Wang Z, Zhou Y, Xu BB, Halila S, Chen J (2021) Ultrastretchable, highly transparent, self-adhesive, and 3D-printable ionic hydrogels for multimode tactical sensing. Chem Mater 33:6731–6742

    Article  CAS  Google Scholar 

  128. He P, Wu J, Pan X, Chen L, Liu K, Gao H, Wu H, Cao S, Huang L, Ni Y (2020) Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications. J Mater Chem A 8:3109–3118

    Article  CAS  Google Scholar 

  129. He Z, Yuan W (2021) Adhesive, stretchable, and transparent organohydrogels for antifreezing, antidrying, and sensitive ionic skins. ACS Appl Mater Interfaces 13:1474–1485

    Article  CAS  PubMed  Google Scholar 

  130. Zhao H, Hao S, Fu Q, Zhang X, Meng L, Xu F, Yang J (2022) Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors. Chem Mater 34:5258–5527

    Article  CAS  Google Scholar 

  131. Hao XP, Li CY, Zhang CW, Du M, Ying Z, Zheng Q, Wu ZL (2021) Self-shaping soft electronics based on patterned hydrogel with stencil-printed liquid metal. Adv Funct Mater 31:2105481

    Article  CAS  Google Scholar 

  132. Fu F, Wang J, Yu J (2021) Interpenetrating PAA-PEDOT conductive hydrogels for flexible skin sensors. J Mater Chem C 9:11794–11800

    Article  Google Scholar 

  133. Yang M, Ren X, Yang T, Xu C, Ye Y, Sun Z, Kong L, Wang B, Luo Z (2021) Polypyrrole/sulfonated multi-walled carbon nanotubes conductive hydrogel for electrochemical sensing of living cells. Chem Eng J 418:129483

    Article  CAS  Google Scholar 

  134. Ren X, Yang M, Yang T, Xu C, Ye Y, Wu X, Zheng X, Wang B, Wan Y, Luo Z (2021) Highly conductive PPy-PEDOT: PSS hybrid hydrogel with superior biocompatibility for bioelectronics application. ACS Appl Mater Interfaces 13:25374–25382

    Article  CAS  PubMed  Google Scholar 

  135. Jiang Y, Zhang X, Zhang W, Wang M, Yan L, Wang K, Han L, Lu X (2022) Infant skin friendly adhesive hydrogel patch activated at body temperature for bioelectronics securing and diabetic wound healing. ACS Nano 16:8662–8676

    Article  CAS  PubMed  Google Scholar 

  136. Han IK, Song KI, Jung SM, Jo Y, Kwon J, Chung T, Yoo S, Jang J, Kim YT, Hwang DS, Kim YS (2022) Electroconductive, adhesive, non-swelling, and viscoelastic hydrogels for bioelectronics. Adv Mater 35:2203431

    Article  Google Scholar 

  137. Gan D, Shuai T, Wang X, Huang Z, Ren F, Fang L, Wang K, Xie C, Lu X (2020) Mussel-inspired redox-active and hydrophilic conductive polymer nanoparticles for adhesive hydrogel bioelectronics. Nano-Micro Lett 12:169

    Article  CAS  Google Scholar 

  138. Gan D, Huang Z, Wang X, Jiang L, Wang C, Zhu M, Ren F, Fang L, Wang K, Xie C, Lu X (2019) Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv Funct Mater 30:1907678

    Article  Google Scholar 

  139. Xue Y, Zhang J, Chen X, Zhang J, Chen G, Zhang K, Lin J, Guo C, Liu J (2021) Trigger-detachable hydrogel adhesives for bioelectronic interfaces. Adv Funct Mater 31:2106446

    Article  CAS  Google Scholar 

  140. Wang Q, Pan X, Lin C, Gao H, Cao S, Ni Y, Ma X (2020) Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chem Eng J 401:126129

    Article  CAS  Google Scholar 

  141. Won D, Kim J, Choi J, Kim H, Han S, Ha I, Bang J, Kim KK, Lee Y, Kim TS (2022) Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci Adv 8:eabo3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhao H, Liu M, Zhang Y, Yin J, Pei R (2020) Nanocomposite hydrogels for tissue engineering applications. Nanoscale 12:14976–14995

    Article  CAS  PubMed  Google Scholar 

  143. Yu Z, Wu P (2021) Water-resistant ionogel electrode with tailorable mechanical properties for aquatic ambulatory physiological signal monitoring. Adv Funct Mater 31:2107226

    Article  CAS  Google Scholar 

  144. Liu Y, Wang C, Xue J, Huang G, Zheng S, Zhao K, Huang J, Wang Y, Zhang Y, Yin T, Li Z (2022) Body temperature enhanced adhesive, antibacterial, and recyclable ionic hydrogel for epidermal electrophysiological monitoring. Adv Healthcare Mater 11:2200653

    Article  CAS  Google Scholar 

  145. Zhou X, Rajeev A, Subramanian A, Li Y, Rossetti N, Natale G, Lodygensky GA, Cicoira F (2022) Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes. Acta Biomater 139:296–306

    Article  CAS  PubMed  Google Scholar 

  146. Shao Z, Hu X, Cheng W, Zhao Y, Hou J, Wu M, Xue D, Wang Y (2020) Degradable self-adhesive epidermal sensors prepared from conductive nanocomposite hydrogel. Nanoscale 12:18771–18781

    Article  CAS  PubMed  Google Scholar 

  147. Li X, He L, Li Y, Chao M, Li M, Wan P, Zhang L (2021) Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors. ACS Nano 15:7765–7773

    Article  CAS  PubMed  Google Scholar 

  148. Deng Z, Yu R, Guo B (2021) Stimuli-responsive conductive hydrogels: design, properties, and applications. Mater Chem Front 5:2092–2123

    Article  CAS  Google Scholar 

  149. Zhao B, Chen Q, Da G, Yao J, Shao Z, Chen X (2021) A highly stretchable and anti-freezing silk-based conductive hydrogel for application as a self-adhesive and transparent ionotronic skin. J Mater Chem C 9:8955–8965

    Article  CAS  Google Scholar 

  150. Yu X, Qin W, Li X, Wang Y, Gu C, Chen J, Yin S (2022) Highly sensitive, weatherability strain and temperature sensors based on AgNPs@CNT composite polyvinyl hydrogel. J Mater Chem A 10:15000–15011

    Article  CAS  Google Scholar 

  151. Park TH, Park S, Yu S, Park S, Lee J, Kim S, Jung Y, Yi H (2021) Highly sensitive on-skin temperature sensors based on biocompatible hydrogels with thermoresponsive transparency and resistivity. Adv Healthcare Mater 10:2100469

    Article  CAS  Google Scholar 

  152. Liu W, Xie R, Zhu J, Wu J, Hui J, Zheng X, Huo F, Fan D (2022) A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors. npj Flex Electron 6:68

    Article  CAS  Google Scholar 

  153. An R, Zhang X, Han L, Wang X, Zhang Y, Shi L, Ran R (2020) Healing, flexible, high thermal sensitive dual-network ionic conductive hydrogels for 3D linear temperature sensor. Biomater Adv 107:110310

    CAS  Google Scholar 

  154. Pang Q, Hu H, Zhang H, Qiao B, Ma L (2022) Temperature-responsive ionic conductive hydrogel for strain and temperature sensors. ACS Appl Mater Interfaces 14:26536–26547

    Article  CAS  Google Scholar 

  155. Sun W, Yang J, Ji X, Jiang H, Gai L, Li X, Liu LJ (2022) Antifreezing zwitterionic hydrogel electrolyte with high conductivity at subzero temperature for flexible sensor and supercapacitor. Sustain Mater Technol 32:e00437

    CAS  Google Scholar 

  156. Liu H, Wang Y, Shi Z, Tan D, Yang X, Xiong L, Li G, Lei Y, Xue L (2022) Fast self-assembly of photonic crystal hydrogel for wearable strain and temperature sensor. Small Methods 6:2200461

    Article  CAS  Google Scholar 

  157. Zhang Z, Chen Z, Wang Y, Zhao Y (2020) Bioinspired conductive cellulose liquid-crystal hydrogels as multifunctional electrical skins. Proc Natl Acad Sci USA 117:18310–18316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang T, Song J, Liu R, Chan SY, Wang K, Su Y, Li P, Huang W (2022) Motion detecting, temperature alarming, and wireless wearable bioelectronics based on intrinsically antibacterial conductive hydrogels. ACS Appl Mater Interfaces 14:14596–14606

    Article  CAS  PubMed  Google Scholar 

  159. Tan Y, Zhang Y, Zhang Y, Zheng J, Wu H, Chen Y, Xu S, Yang J, Liu C, Zhang Y (2020) Dual cross-linked ion-based temperature-responsive conductive hydrogels with multiple sensors and steady electrocardiogram monitoring. Chem Mater 32:7670–7678

    Article  CAS  Google Scholar 

  160. Huang X, Ge G, She M, Ma Q, Lu Y, Zhao W, Shen Q, Wang Q, Shao J (2022) Self-healing hydrogel with multiple dynamic interactions for multifunctional epidermal sensor. Appl Surf Sci 598:153803

    Article  CAS  Google Scholar 

  161. Chen X, Bai YK, Zhao CZ, Shen X, Zhang Q (2020) Lithium bonds in lithium batteries. Angew Chem Int Ed 59:11192–11195

    Article  CAS  Google Scholar 

  162. Lin J, Li J, Feng S, Gu C, Li H, Lu H, Hu F, Pan D, Xu BB, Guo Z (2022) An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators. Nano Res 16:1052–1063

    Article  Google Scholar 

  163. Hu S, Han J, Shi Z, Chen K, Xu N, Wang Y, Zheng R, Tao Y, Sun Q, Wang ZL, Yang G (2022) Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator. Nano-Micro Lett 14:115

    Article  CAS  Google Scholar 

  164. Gao W, Lei Z, Zhang C, Liu X, Chen Y (2021) Stretchable and freeze-tolerant organohydrogel thermocells with enhanced thermoelectric performance continually working at subzero temperatures. Adv Funct Mater 31:2104071

    Article  CAS  Google Scholar 

  165. Zhang X, Cui C, Chen S, Meng L, Zhao H, Xu F, Yang J (2022) Adhesive ionohydrogels based on ionic liquid/water binary solvents with freezing tolerance for flexible ionotronic devices. Chem Mater 34:1065–1077

    Article  CAS  Google Scholar 

  166. Wu M, Wang X, Xia Y, Zhu Y, Zhu S, Jia C, Guo W, Li Q, Yan Z (2022) Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95:106967

    Article  CAS  Google Scholar 

  167. Liu Y, Wong TH, Huang X, Yiu CK, Gao Y, Zhao L, Zhou J, Park W, Zhao Z, Yao K, Li H, Jia H, Li J, Li J, Huang Y, Wu M, Zhang B, Li D, Zhang C, Wang Z, Yu X (2022) Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing. Nano Energy 99:107442

    Article  CAS  Google Scholar 

  168. Feng Y, Yu J, Sun D, Dang C, Ren W, Shao C, Sun R (2022) Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy 98:107284

    Article  CAS  Google Scholar 

  169. Sun H, Zhao Y, Wang C, Zhou K, Yan C, Zheng G, Huang J, Dai K, Liu C, Shen C (2020) Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 76:105035

    Article  CAS  Google Scholar 

  170. Dong L, Wang M, Wu J, Zhu C, Shi J, Morikawa H (2022) Stretchable, adhesive, self-healable, and conductive hydrogel-based deformable triboelectric nanogenerator for energy harvesting and human motion sensing. ACS Appl Mater Interfaces 14:9126–9137

    Article  CAS  PubMed  Google Scholar 

  171. Khan A, Ginnaram S, Wu C-H, Lu H-W, Pu Y-F, Wu JI, Gupta D, Lai Y-C, Lin H-C (2021) Fully self-healable, highly stretchable, and anti-freezing supramolecular gels for energy-harvesting triboelectric nanogenerator and self-powered wearable electronics. Nano Energy 90:106525

    Article  CAS  Google Scholar 

  172. Yang D, Ni Y, Kong X, Li S, Chen X, Zhang L, Wang ZL (2021) Self-Healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment. ACS Nano 15:14653–14661

    Article  CAS  PubMed  Google Scholar 

  173. Akram W, Chen Q, Xia G, Fang J (2023) A review of single electrode triboelectric nanogenerators. Nano Energy 106:108043

    Article  CAS  Google Scholar 

  174. Luo X, Zhu L, Wang YC, Li J, Nie J, Wang ZL (2021) A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv Funct Mater 31:2104928

    Article  CAS  Google Scholar 

  175. Hu K, Zhao Z, Wang Y, Yu L, Liu K, Wu H, Huang L, Chen L, Ni Y (2022) A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. J Mater Chem A 10:12092–12103

    Article  CAS  Google Scholar 

  176. Lin Z, Li X, Zhang H, Xu BB, Wasnik P, Li H, Singh MV, Ma Y, Li T, Guo Z (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 10:4358–4392

    Article  CAS  Google Scholar 

  177. Huang S, Hou L, Li T, Jiao Y, Wu P (2022) Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv Mater 34:2110140

    Article  CAS  Google Scholar 

  178. Yang J, Hu X, Fang X, Fan L, Qin G, Zhang Z, Xu J, Liang Y, Chen Q (2022) Tough and redox-mediated alkaline gel polymer electrolyte membrane for flexible supercapacitor with high energy density and low temperature resistance. J Membr Sci 650:120386

    Article  CAS  Google Scholar 

  179. Zhu X, Ji C, Meng Q, Mi H, Yang Q, Li Z, Yang N, Qiu J (2022) Freeze-tolerant hydrogel electrolyte with high strength for stable operation of flexible zinc-ion hybrid supercapacitors. Small 18:2200055

    Article  CAS  Google Scholar 

  180. Sun W, Xu Z, Qiao C, Lv B, Gai L, Ji X, Jiang H, Liu L (2022) Antifreezing proton zwitterionic hydrogel electrolyte via ionic hopping and Grotthuss transport mechanism toward solid supercapacitor working at -50 ℃. Adv Sci 9:2201679

    Article  CAS  Google Scholar 

  181. Wu S, Lou D, Wang H, Jiang D, Fang X, Meng J, Sun X, Li J (2022) One-pot synthesis of anti-freezing carrageenan/polyacrylamide double-network hydrogel electrolyte for low-temperature flexible supercapacitors. Chem Eng J 435:135057

    Article  CAS  Google Scholar 

  182. Li Y, Gong Q, Liu X, Xia Z, Yang Y, Chen C, Qian C (2021) Wide temperature-tolerant polyaniline/cellulose/polyacrylamide hydrogels for high-performance supercapacitors and motion sensors. Carbohydr Polym 267:118207

    Article  CAS  PubMed  Google Scholar 

  183. Ge W, Cao S, Yang Y, Rojas OJ, Wang X (2021) Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions. Chem Eng J 408:127306

    Article  CAS  Google Scholar 

  184. Yang Y, Wang K-P, Zang Q, Shi Q, Wang Y, Xiao Z, Zhang Q, Wang L (2022) Anionic organo-hydrogel electrolyte with enhanced ionic conductivity and balanced mechanical properties for flexible supercapacitors. J Mater Chem A 10:11277–11287

    Article  CAS  Google Scholar 

  185. Wang Y, Jiang W, Li J, Ahommed MS, Wang C, Ji X, Liu Y, Yang G, Ni Y, Lyu G (2023) Zinc-ion engineered plant-based multifunctional hydrogels for flexible wearable strain sensors, bio-electrodes and zinc-ion hybrid capacitors. Chem Eng J 465:142917

    Article  CAS  Google Scholar 

  186. Zhang K, Pang Y, Chen C, Wu M, Liu Y, Yu S, Li L, Ji Z, Pang J (2022) Stretchable and conductive cellulose hydrogel electrolytes for flexible and foldable solid-state supercapacitors. Carbohydr Polym 293:119673

    Article  CAS  PubMed  Google Scholar 

  187. Wang S, Zhang D, He X, Yuan J, Que W, Yang Y, Protsak I, Huang X, Zhang C, Lu T, Pal P, Liu S, Zheng SY, Yang J (2022) Polyzwitterionic double-network ionogel electrolytes for supercapacitors with cryogenic-effective stability. Chem Eng J 438:135607

    Article  CAS  Google Scholar 

  188. Peng K, Wang W, Zhang J, Ma Y, Lin L, Gan Q, Chen Y, Feng C (2022) Preparation of chitosan/sodium alginate conductive hydrogels with high salt contents and their application in flexible supercapacitors. Carbohydr Polym 278:118927

    Article  CAS  PubMed  Google Scholar 

  189. Hua M, Wu S, Jin Y, Zhao Y, Yao B, He X (2021) Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv Mater 33:2100983

    Article  CAS  Google Scholar 

  190. Fu Q, Hao S, Meng L, Xu F, Yang J (2021) Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability. ACS Nano 15:18469–18482

    Article  CAS  PubMed  Google Scholar 

  191. Gao J, Guo F, Ji C, He X, Mi H, Qiu J (2022) A flexible and stable zinc-ion hybrid capacitor with polysaccharide-reinforced cross-linked hydrogel electrolyte and binder-free carbon cathode. J Mater Chem A 10:24639–24648

    Article  CAS  Google Scholar 

  192. Wei L, Chen Y, Huang Z, Zheng S, Guo X (2023) Redox-enhanced zinc-ion hybrid capacitors with high energy density enabled by high-voltage active aqueous electrolytes based on low salt concentration. Energy Storage Mater 58:30–39

    Article  Google Scholar 

  193. Feng DD, Jiao YC, Wu PY (2023) Proton-reservoir hydrogel electrolyte for long-term cycling Zn/PANI batteries in wide temperature range. Angew Chem Int Ed 62:e202215060

    Article  CAS  Google Scholar 

  194. Yan Y, Duan S, Liu B, Wu S, Alsaid Y, Yao B, Nandi S, Du Y, Wang TW, Li Y, He X (2023) Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv Mater 35:2211673

    Article  CAS  Google Scholar 

  195. Lu HY, Hu JS, Wang LT, Li JZ, Ma X, Zhu ZC, Li HQ, Zhao YJ, Li YJ, Zhao JX, Xu BG (2022) Multi-component crosslinked hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with high temperature adaptability. Adv Funct Mater 32:2112540

    Article  CAS  Google Scholar 

  196. Wu J, Wu Z, Han S, Yang BR, Gui X, Tao K, Liu C, Miao J, Norford LK (2019) Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel. ACS Appl Mater Interfaces 11:2364–2373

    Article  CAS  PubMed  Google Scholar 

  197. Wu Z, Ding Q, Wang H, Ye J, Luo Y, Yu J, Zhan R, Zhang H, Tao K, Liu C, Wu J (2023) A humidity-resistant, sensitive, and stretchable hydrogel-based oxygen sensor for wireless health and environmental monitoring. Adv Funct Mater 15:2308280

    Google Scholar 

  198. Zhang X, Liu Y, Liu H, Liang T, Zhang P, Dai Z (2021) FeSe2/Hematite n-n heterojunction with oxygen spillover for highly efficient NO2 gas sensing. Sens Actuators B Chem 345:130357

    Article  CAS  Google Scholar 

  199. Zhi H, Gao J, Feng L (2020) Hydrogel-based gas sensors for NO2 and NH3. ACS Sens 5:772–780

    Article  CAS  PubMed  Google Scholar 

  200. Li J, Ding Q, Wang H, Wu Z, Gui X, Li C, Hu N, Tao K, Wu J (2023) Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett 15:105

    Article  CAS  Google Scholar 

  201. Qin Y, Chen Y, Zhang X, Zheng A, Xia Q (2023) Ionic conductive, antidrying, and flexible organohydrogels suitable for pressure sensors and gas sensors. ACS Appl Electron Mater 5:2758–2768

    Article  CAS  Google Scholar 

  202. Liu L, Fei T, Guan X, Lin X, Zhao H, Zhang T (2020) Room temperature ammonia gas sensor based on ionic conductive biomass hydrogels. Sens Actuators B Chem 320:128318

    Article  CAS  Google Scholar 

  203. Ding Q, Zhou Z, Wang H, Wu Z, Tao K, Yang BR, Xie X, Fu J, Wu J (2022) Self-healable, recyclable, ultrastretchable, and high-performance NO2 sensors based on an organohydrogel for room and sub-zero temperature and wireless operation. SmartMater 4:e1141

    Article  Google Scholar 

  204. Wu Z, Rong L, Yang J, Wei Y, Tao K, Zhou Y, Yang BR, Xie X, Wu J (2021) Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small 17:2104997

    Article  CAS  Google Scholar 

  205. Wei Y, Wang H, Ding Q, Wu Z, Zhang H, Tao K, Xie X, Wu J (2022) Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO2 sensors and the mechanism. Mater Horiz 9:1921–1934

    Article  CAS  PubMed  Google Scholar 

  206. Wu J, Wu Z, Huang W, Yang X, Liang Y, Tao K, Yang BR, Shi W, Xie X (2020) Stretchable, stable, and room-temperature gas sensors based on self-healing and transparent organohydrogels. ACS Appl Mater Interfaces 12:52070–52081

    Article  CAS  PubMed  Google Scholar 

  207. Lin Y, Wu Z, Li C, Ding Q, Tao K, Zhai K, Chen M, Zilberman M, Xie X, Wu J (2022) Deformable, transparent, high-performance, room-temperature oxygen sensors based on ion-conductive environment-tolerant, and green organohydrogels. EcoMater 4:e12220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jiaying Chen and Fangfei Liu contributed equally to this work. The helpful discussion with Dr Jinwei Zhang (College of Biomass Science and Engineering, Sichuan University) is gratefully acknowledged.

Funding

This work was financially supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Nos. 2023D01C35, 2023D01C171), National Natural Science Foundation of China (Nos. 52363016, 22368046, 52163020), Xinjiang Tianchi Yingcai Project (No. 51052300523), and Xinjiang Tianchi Doctoral Project (No. TCBS202120).

Author information

Authors and Affiliations

Authors

Contributions

Jiaying Chen and Fangfei Liu wrote the main manuscript text and prepared figures. Tursun Abdiryim and Xiong Liu reviewed and edited the manuscript text. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fangfei Liu, Tursun Abdiryim or Xiong Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Liu, F., Abdiryim, T. et al. An overview of conductive composite hydrogels for flexible electronic devices. Adv Compos Hybrid Mater 7, 35 (2024). https://doi.org/10.1007/s42114-024-00841-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00841-6

Keywords

Navigation