Skip to main content
Log in

Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A Cu nanowire (NW)/cuprous oxide (Cu2O)-based semiconductor-liquid junction solar cell with a greatly enhanced efficiency and reduced cost was assembled. The Cu NWs function as a transparent electrode as well as part of the Cu NWs/ Cu2O coaxial structures, which remarkably benefit the charge separation. The best solar cell reached a conversion efficiency as high as 1.92% under a simulated AM1.5G illumination, which is 106 times higher than that of cells based on fluorine-doped tin oxide and Cu2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161.

    Article  Google Scholar 

  2. Costa, R. D.; Lodermeyer, F.; Casillas, R.; Guldi, D. M. Recent advances in multifunctional nanocarbons used in dye-sensitized solar cells. Energy Environ. Sci. 2014, 7, 1281–1296.

    Article  Google Scholar 

  3. Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planarheterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761.

    Article  Google Scholar 

  4. Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Gratzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

    Article  Google Scholar 

  5. Hodes, G.; Cahen, D. Perovskite cells roll forward. Nat. Photonics 2014, 8, 87–88.

    Article  Google Scholar 

  6. Yuhas, B. D.; Yang, P. D. Nanowire-based all-oxide solar cells. J. Am. Chem. Soc. 2009, 131, 3756–3761.

    Article  Google Scholar 

  7. Musselman, K. P.; Wisnet, A.; Iza, D. C.; Hesse, H. C.; Scheu, C.; MacManus-Driscoll, J. L.; Schmidt-Mende, L. Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells. Adv. Mater. 2010, 22, E254–E258.

    Article  Google Scholar 

  8. Cui, J. B.; Gibson, U. J. A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells. J. Phys. Chem. C. 2010, 114, 6408–6412.

    Article  Google Scholar 

  9. Cheng, K.; Li, Q. Q.; Meng, J.; Han, X.; Wu, Y. Q.; Wang, S. J.; Qian, L.; Du, Z. L. Interface engineering for efficient charge collection in Cu2O/ZnO heterojunction solar cells with ordered ZnO cavity-like nanopatterns. Sol. Energy Mater. Sol. Cells 2013, 116, 120–125.

    Article  Google Scholar 

  10. Fujimoto, K.; Oku, T.; Akiyama, T. Fabrication and characterization of ZnO/Cu2O solar cells prepared by electrodeposition. Appl. Phys. Express 2013, 6, 086503.

    Article  Google Scholar 

  11. Hsu, Y.-K.; Lin, H.-H.; Wu, J.-R.; Chen, M.-H.; Chen, Y.-C.; Lin, Y.-G. Electrochemical growth and characterization of a p-Cu2O thin film on n-ZnO nanorods for solar cell application. RSC Adv. 2014, 4, 7655–7659.

    Article  Google Scholar 

  12. Xie, J. L.; Guo, C. X.; Li, C. M. Ga doping to significantly improve the performance of all-electrochemically fabricated Cu2O-ZnO nanowire solar cells. Phys. Chem. Chem. Phys. 2013, 15, 15905–15911.

    Article  Google Scholar 

  13. Jose, R.; Thavasi, V.; Ramakrishna, S. Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 2009, 92, 289–301.

    Article  Google Scholar 

  14. Xiang, C. X.; Kimball, G. M.; Grimm, R. L.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. 820 mV open-circuit voltages from Cu2O/CH3CN junctions. Energy Environ. Sci. 2011, 4, 1311–1318.

    Article  Google Scholar 

  15. Shao, F.; Sun, J.; Gao, L.; Luo, J. Q.; Liu, Y. Q.; Yang, S. W. High efficiency semiconductor-liquid junction solar cells based on Cu/Cu2O. Adv. Funct. Mater. 2012, 22, 3907–3913.

    Article  Google Scholar 

  16. Rathmell, A. R.; Bergin, S. M.; Hua, Y. L.; Li, Z.-Y.; Wiley, B. J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 2010, 22, 3558–3563.

    Article  Google Scholar 

  17. Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

    Article  Google Scholar 

  18. Li, L.; Yu, Z. B.; Hu, W. L.; Chang, C.-H.; Chen, Q.; Pei, Q. B. Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Adv. Mater. 2011, 23, 5563–5567.

    Article  Google Scholar 

  19. Lim, D. C.; Kim, K.-D.; Park, S.-Y.; Hong, E. M.; Seo, H. O.; Lim, J. H.; Lee, K. H.; Jeong, Y.; Song, C.; Lee, E. et al. Towards fabrication of high-performing organic photovoltaics: New donor-polymer, atomic layer deposited thin buffer layer and plasmonic effects. Energy Environ. Sci. 2012, 5, 9803–9807.

    Article  Google Scholar 

  20. Guo, H. Z.; Lin, N.; Chen, Y. Z.; Wang, Z. W.; Xie, Q. S.; Zheng, T. C.; Gao, N.; Li, S. P.; Kang, J. Y.; Cai, D. J. et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 2013, 3, 2323.

    Google Scholar 

  21. Stewart, I. E.; Rathmell, A. R.; Yan, L.; Ye, S. R.; Flowers, P. F.; You, W.; Wiley, B. J. Solution-processed copper-nickel nanowire anodes for organic solar cells. Nanoscale 2014, 6, 5980–5988.

    Article  Google Scholar 

  22. Rathmell, A. R.; Nguyen, M.; Chi, M. F.; Wiley, B. J. Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks. Nano Lett. 2012, 12, 3193–3199.

    Article  Google Scholar 

  23. Chung, C.-H.; Song, T.-B.; Bob, B.; Zhu, R.; Duan, H.-S.; Yang, Y. Silver nanowire composite window layers for fully solution-deposited thin-film photovoltaic devices. Adv. Mater. 2012, 24, 5499–5504.

    Article  Google Scholar 

  24. Song, M.; You, D. S.; Lim, K.; Park, S.; Jung, S.; Kim, C. S.; Kim, D.-H.; Kim, D.-G.; Kim, J.-K.; Park, J. et al. Highly efficient and bendable organic solar cells with solutionprocessed silver nanowire electrodes. Adv. Funct. Mater. 2013, 23, 4177–4184.

    Article  Google Scholar 

  25. Cheng, Y.; Wang, S. L.; Wang, R. R.; Sun, J.; Gao, L. A. Copper nanowire based transparent conductive films with high stability and superior stretchability. J. Mater. Chem. C. 2014, 2, 5309–5316.

    Article  Google Scholar 

  26. Zhang, D. Q.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

    Article  Google Scholar 

  27. Hu, L. B.; Zheng, G. Y.; Yao, J.; Liu, N. A.; Weil, B.; Eskilsson, M.; Karabulut, E.; Ruan, Z. C.; Fan, S. H.; Bloking, J. T. et al. Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 2013, 6, 513–518.

    Article  Google Scholar 

  28. McShane, C. M.; Choi, K.-S. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J. Am. Chem. Soc. 2009, 131, 2561–2569.

    Article  Google Scholar 

  29. Wang, L. C.; Tao, M. Fabrication and characterization of p-n homojunctions in cuprous oxide by electrochemical deposition. Electrochem. Solid-State Lett. 2007, 10, H248–H250.

    Article  Google Scholar 

  30. Tang, Y. W.; Chen, Z. G.; Jia, Z. J.; Zhang, L. S.; Li, J. L. Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO2 films. Mater. Lett. 2005, 59, 434–438.

    Article  Google Scholar 

  31. Zhang, Y. Z.; Zhao, Y. Q.; Li, F. Y.; Sun, Z. X.; Xu, L.; Guo, X. L. Photovoltaic performance enhancement of Cu2O photocathodes by electrostatic adsorption of polyoxometalate on Cu2O crystal faces. RSC Adv. 2014, 4, 1362–1365.

    Article  Google Scholar 

  32. Mahalingam, T.; Chitra, J. S. P.; Chu, J. P.; Moon, H.; Kwon, H. J.; Kim, Y. D. Photoelectrochemical solar cell studies on electroplated cuprous oxide thin films. J. Mater. Sci. - Mater. Electron. 2006, 17, 519–523.

    Article  Google Scholar 

  33. Tadatsugu, M.; Hideki, T.; Takahiro, S.; Toshihiro, M.; Hirotoshi, S. High-efficiency oxide heterojunction solar cells using Cu2O sheets. Jpn. J. Appl. Phys. 2004, 43, L917.

    Article  Google Scholar 

  34. Sears, W. M.; Fortin, E.; Webb, J. B. Indium tin oxide/Cu2O photovoltaic cells. Thin Solid Films 1983, 103, 303–309.

    Article  Google Scholar 

  35. Musselman, K. P.; Marin, A.; Wisnet, A.; Scheu, C.; MacManus-Driscoll, J. L.; Schmidt-Mende, L. A novel buffering technique for aqueous processing of zinc oxide nanostructures and interfaces, and corresponding improvement of electrodeposited ZnO-Cu2O photovoltaics. Adv. Funct. Mater. 2011, 21, 573–582.

    Article  Google Scholar 

  36. Li, B. H.; Han, C. P.; He, Y.-B.; Yang, C.; Du, H. D.; Yang, Q.-H.; Kang, F. Y. Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 2012, 5, 9595–9602.

    Article  Google Scholar 

  37. Heng, L. P.; Wang, X. Y.; Yang, N. L.; Zhai, J.; Wan, M. X.; Jiang, L. p-n-junction-based flexible dye-sensitized solar cells. Adv. Funct. Mater. 2010, 20, 266–271.

    Article  Google Scholar 

  38. Assimos, J. A.; Trivich, D. Photovoltaic properties and barrier heights of single-crystal and polycrystalline Cu2O-Cu contacts. J. Appl. Phys. 1973, 44, 1687–1693.

    Article  Google Scholar 

  39. Kaneko, M.; Ueno, H.; Nemoto, J. Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions. Beilstein J. Nanotechnol. 2011, 2, 127–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ranran Wang or Jing Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, H., Wang, R., Wang, W. et al. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. Nano Res. 8, 3205–3215 (2015). https://doi.org/10.1007/s12274-015-0820-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0820-0

Keywords

Navigation