Skip to main content
Log in

Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Copper nanowires (Cu NWs) have attracted increasing attention as building blocks for electronics due to their outstanding electrical properties and low cost. However, organic residues and oxide layers ubiquitously existing on the surface of Cu NWs impede good inter-wire contact. Commonly used methods such as thermal annealing and acid treatment often lead to nanowire damage. Herein, hydrogen plasma treatment at room temperature has been demonstrated to be effective for simultaneous surface cleaning and selective welding of Cu NWs at junctions. Transparent electrodes with excellent optical-electrical performance (19 O·sq–1 @ 90% T) and enhanced stability have been fabricated and integrated into organic solar cells. Besides, Cu NW conductors with superior stretchability and cycling stability under stretching speeds of up to 400 mm·min–1 can also be produced by the nanowelding process, and the feasibility of their application in stretchable LED circuits has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J.; Yun, J. H.; Kim, H.; Cho, Y.; Park, H. H.; Kumar, M. M. D.; Yi, J.; Anderson, W. A.; Kim, D. W. Transparent conductor-embedding nanocones for selective emitters: Optical and electrical improvements of Si solar cells. Sci. Rep. 2015, 5, 9256.

    Article  Google Scholar 

  2. Yao, S. S.; Zhu, Y. Nanomaterial-enabled stretchable conductors: Strategies, materials and devices. Adv. Mater. 2015, 27, 1480–1511.

    Article  Google Scholar 

  3. Chang, J. H.; Chiang, K. M.; Kang, H. W.; Chi, W. J.; Chang, J. H.; Wu, C. I.; Lin, H. W. A solution-processed molybdenum oxide treated silver nanowire network: A highly conductive transparent conducting electrode with superior mechanical and hole injection properties. Nanoscale 2015, 7, 4572–4579.

    Article  Google Scholar 

  4. Jin, Y. X.; Li, L.; Cheng, Y. R.; Kong, L. Q.; Pei, Q. B.; Xiao, F. Cohesively enhanced conductivity and adhesion of flexible silver nanowire networks by biocompatible polymer sol–gel transition. Adv. Funct. Mater. 2015, 25, 1581–1587.

    Article  Google Scholar 

  5. Kholmanov, I. N.; Magnuson, C. W.; Piner, R.; Kim, J. Y.; Aliev, A. E.; Tan, C.; Kim, T. Y.; Zakhidov, A. A.; Sberveglieri, G.; Baughman, R. H. et al. Optical, electrical, and electromechanical properties of hybrid graphene/carbon nanotube films. Adv. Mater. 2015, 27, 3053–3059.

    Article  Google Scholar 

  6. Lin, Y.; Kim, J. W.; Connell, J. W.; Lebrón-Colón, M.; Siochi, E. J. Purification of carbon nanotube sheets. Adv. Eng. Mater. 2015, 17, 674–688.

    Article  Google Scholar 

  7. Jurewicz, I.; Fahimi, A.; Lyons, P. E.; Smith, R. J.; Cann, M.; Large, M. L.; Tian, M. W.; Coleman, J. N.; Dalton, A. B. Insulator-conductor type transitions in graphene-modified silver nanowire networks: A route to inexpensive transparent conductors. Adv. Funct. Mater. 2014, 24, 7580–7587.

    Article  Google Scholar 

  8. Rahimi, S.; Tao, L.; Chowdhury, S. F.; Park, S.; Jouvray, A.; Buttress, S.; Rupesinghe, N.; Teo, K.; Akinwande, D. Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors. ACS Nano 2014, 8, 10471–10479.

    Article  Google Scholar 

  9. Guo, C. F.; Ren, Z. F. Flexible transparent conductors based on metal nanowire networks. Mater. Today 2015, 18, 143–154.

    Article  Google Scholar 

  10. Song, J. Z.; Li, J. H.; Xu, J. Y.; Zeng, H. B. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett. 2014, 14, 6298–6305.

    Article  Google Scholar 

  11. Ye, S. R.; Rathmell, A. R.; Chen, Z. F.; Stewart, I. E.; Wiley, B. J. Metal nanowire networks: The next generation of transparent conductors. Adv. Mater. 2014, 26, 6670–6687.

    Article  Google Scholar 

  12. Lee, D.; Paeng, D.; Park, H. K.; Grigoropoulos, C. P. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. ACS Nano 2014, 8, 9807–9814.

    Article  Google Scholar 

  13. Mehta, R.; Chugh, S.; Chen, Z. H. Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires. Nano Lett. 2015, 15, 2024–2030.

    Article  Google Scholar 

  14. Rathmell, A. R.; Wiley, B. J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater. 2011, 23, 4798–4803.

    Article  Google Scholar 

  15. Rathmell, A. R.; Bergin, S. M.; Hua, Y. L.; Li, Z. Y.; Wiley, B. J. The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv. Mater. 2010, 22, 3558–3563.

    Article  Google Scholar 

  16. Zhang, D. Q.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

    Article  Google Scholar 

  17. Guo, H. Z.; Lin, N.; Chen, Y. Z.; Wang, Z. W.; Xie, Q. S.; Zheng, T. C.; Gao, N.; Li, S. P.; Kang, J. Y.; Cai, D. J. et al. Copper nanowires as fully transparent conductive electrodes. Sci. Rep. 2013, 3, 9256.

    Google Scholar 

  18. Mayousse, C.; Celle, C.; Carella, A.; Simonato, J.-P. Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT: PSS. Nano Res. 2014, 7, 315–324.

    Article  Google Scholar 

  19. Stewart, I. E.; Rathmell, A. R.; Yan, L.; Ye, S. R.; Flowers, P. F.; You, W.; Wiley, B. J. Solution-processed coppernickel nanowire anodes for organic solar cells. Nanoscale 2014, 6, 5980–5988.

    Article  Google Scholar 

  20. Won, Y.; Kim, A.; Lee, D.; Yang, W.; Woo, K.; Jeong, S.; Moon, J. Annealing-free fabrication of highly oxidationresistive copper nanowire composite conductors for photovoltaics. NPG Asia Mater. 2014, 6, e105.

    Article  Google Scholar 

  21. Oh, J. S.; Oh, J. S.; Shin, J. H.; Yeom, G. Y.; Kim, K. N. Nano-welding of Ag nanowires using rapid thermal annealing for transparent conductive films. J. Nanosci. Nanotechnol. 2015, 15, 8647–8651.

    Article  Google Scholar 

  22. Song, T.-B.; Chen, Y.; Chung, C.-H.; Yang, Y.; Bob, B.; Duan, H.-S.; Li, G.; Tu, K.-N.; Huang, Y.; Yang, Y. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 2014, 8, 2804–2811.

    Article  Google Scholar 

  23. Lu, Y.; Huang, J. Y.; Wang, C.; Sun, S. H.; Lou, J. Cold welding of ultrathin gold nanowires. Nat. Nanotech. 2010, 5, 218–224.

    Article  Google Scholar 

  24. Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241–249.

    Article  Google Scholar 

  25. Han, S.; Hong, S.; Ham, J.; Yeo, J.; Lee, J.; Kang, B.; Lee, P.; Kwon, J.; Lee, S. S.; Yang, M.-Y. et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 2014, 26, 5808–5814.

    Article  Google Scholar 

  26. Cheng, Y.; Wang, S. L.; Wang, R. R.; Sun, J.; Gao, L. Copper nanowire based transparent conductive films with high stability and superior stretchability. J. Mater. Chem. C 2014, 2, 5309–5316.

    Article  Google Scholar 

  27. Cao, L. Y.; Barsic, D. N.; Guichard, A. R.; Brongersma, M. L. Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 2007, 7, 3523–3527.

    Article  Google Scholar 

  28. Govorov, A. O.; Zhang, W.; Skeini, T.; Richardson, H.; Lee, J.; Kotov, N. A. Gold nanoparticle ensembles as heaters and actuators: Melting and collective plasmon resonances. Nanoscale Res. Lett. 2006, 1, 84–90.

    Article  Google Scholar 

  29. Dunaev, A. V. Survey of emission spectra of the plasma of chlorine, hydrogen chloride, argon, and hydrogen. Russ. Microelectronics 2015, 44, 173–177.

    Article  Google Scholar 

  30. Klement, P.; Feser, C.; Hanke, B.; von Maydell, K.; Agert, C. Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers. Appl. Phys. Lett. 2013, 102, 152109.

    Article  Google Scholar 

  31. Wu, M. Z.; Huang, T. Y.; Jin, C. G.; Zhuge, L. J.; Han, Q.; Wu, X. M. Effect of multiple frequency H2/Ar plasma treatment on the optical, electrical, and structural properties of AZO films. IEEE T. Plasma Sci. 2014, 42, 3687–3690.

    Article  Google Scholar 

  32. van Huis, M. A.; Kunneman, L. T.; Overgaag, K.; Xu, Q.; Pandraud, G.; Zandbergen, H. W.; Vanmaekelbergh, D. Low-temperature nanocrystal unification through rotations and relaxations probed by in situ transmission electron microscopy. Nano Lett. 2008, 8, 3959–3963.

    Article  Google Scholar 

  33. Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.

    Article  Google Scholar 

  34. Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl, A. Graphene as a long-term metal oxidation barrier: Worse than nothing. ACS Nano 2013, 7, 5763–5768.

    Article  Google Scholar 

  35. Zhou, F.; Li, Z. T.; Shenoy, G. J.; Li, L.; Liu, H. T. Enhanced room-temperature corrosion of copper in the presence of graphene. ACS Nano 2013, 7, 6939–6947.

    Article  Google Scholar 

  36. Shi, L. J.; Wang, R. R.; Zhai, H. T.; Liu, Y. Q.; Gao, L.; Sun, J. A long-term oxidation barrier for copper nanowires: Graphene says yes. Phys. Chem. Chem. Phys. 2015, 17, 4231–4236.

    Article  Google Scholar 

  37. Hu, W. L.; Niu, X. F.; Li, L.; Yun, S.; Yu, Z. B.; Pei, Q. B. Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. Nanotechnology 2012, 23, 344002.

    Article  Google Scholar 

  38. Hu, W. L.; Wang, R. R.; Lu, Y. F.; Pei, Q. B. An elastomeric transparent composite electrode based on copper nanowires and polyurethane. J. Mater. Chem. C 2014, 2, 1298–1305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Zhai, H., Wang, T. et al. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Res. 9, 2138–2148 (2016). https://doi.org/10.1007/s12274-016-1103-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1103-0

Keywords

Navigation