Skip to main content
Log in

ooc1, a unique gene expressed only during growth of Hypocrea jecorina (anamorph: Trichoderma reesei) on cellulose

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

To grow on cellulose as a carbon source, Hypocrea jecorina (Trichoderma reesei) expresses and secretes a number of cellulases. This mechanism of induction by an insoluble carbon source has been controversially explained, but is most frequently attributed to the formation of the β-1,2-diglucoside sophorose, a powerful soluble inducer of cellulases, by means of transglycosylation by constitutive or conidia-bound β-glycoside hydrolases. Some recent results, however, have put the role of sophorose as the mediator of cellulose induction in question. Here we used the rapid subtraction hybridization approach to clone genes expressed by H. jecorina in the presence of cellulose but not upon incubation with sophorose. From a total of 96 expressed sequence tag (EST) fragments, 37 putative positives—representing ten different genes—were selected and analysed. All of them were present in the genome sequence of H. jecorina. Three of them encode proteins known from H. jecorina, five encode enzymes involved in secondary metabolism and one gene encodes an as yet unknown member of glycoside hydrolase family 30. Two EST fragments had no orthologues in other fungi. One of them made up for 25 of the 37 EST fragments analysed. The corresponding gene (only expressed on cellulose, ooc1) encodes a small secreted 10.5-kDa protein. The ooc1 transcript is only detectable during growth on cellulose in darkness, but not on cellulose in light or in the presence of other cellulase inducers (sophorose, lactose), nor is it formed during growth on glucose or glycerol. Its expression is strongly reduced, but not completely abolished in the cellulase non-inducible mutant QM 9978. The results of this study provide evidence that induction of gene expression by cellulose does not necessarily correlate with that by sophorose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander NJ, McCormick SP, Hohn TM (1999) TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol Gen Genet 261:977–984

    Article  PubMed  CAS  Google Scholar 

  • Andrade AC, Van Nistelrooy JG, Peery RB, Skatrud PL, De Waard MA (2000) The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production. Mol Gen Genet 263:966–977

    Article  PubMed  CAS  Google Scholar 

  • Aro N, Saloheimo A, Ilmen M, and Penttila M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276:24309–24314

    Article  PubMed  CAS  Google Scholar 

  • Banka RR, Mishra S, Ghose TK (1998) Fibril formation from cellulose by a novel protein from Trichoderma reesei: a non hydrolytic cellulolytic component? World J Microbiol Biotechnol 14:551–558

    Article  CAS  Google Scholar 

  • Brewer D, Mason FG, Taylor A (1987) The production of alamethicins by Trichoderma spp. Can J Microbiol 33:619–625

    PubMed  CAS  Google Scholar 

  • Chambergo FS, Bonaccorsi ED, Ferreira AJ, Ramos AS, Ferreira JRJJR, Abrahao-Neto J, Farah JP, El-Dorry H (2002) Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277:139831–139838

    Article  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Dinur T, Osiecki KM, Legler G, Gatt S, Desnick RJ, Grabowski GA (1986) Human acid β-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site. Proc Natl Acad Sci USA 83:1660–1664

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, Heijne G von (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997

    Article  PubMed  Google Scholar 

  • Graeme-Cook KA, Faull JL (1991) Effect of ulktraviolet-induced mutants of Trichoderma harzianum with altered production on selected pathogens in vivo. Can J Microbiol 37:659–664

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Adelman J, Jiang H, Goldstein NI, Fisher PB (1999) Differentiation induction subtraction hybridization (DISH): a strategy for cloning genes displaying differential expression during growth arrest and terminal differentiation. Gene 236:125–131

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Kang DC, Alexandre D, Fisher PB (2000) RaSH, a rapid subtraction hybridization approach for identifying and cloning differentially expressed genes. Proc Natl Acad Sci USA 97:12684–12689

    Article  PubMed  CAS  Google Scholar 

  • Kang DC, LaFrance R, Su ZZ, Fisher PB (1998) Reciprocal subtraction differential RNA display: an efficient and rapid procedure for isolating differentially expressed gene sequences. Proc Natl Acad Sci USA 95:13788–13793

    Article  PubMed  CAS  Google Scholar 

  • Kelly SL, Lamb DC, Jackson CJ, Warrilow AG, Kelly DE (2003) The biodiversity of microbial cytochromes P450. Adv Microb Physiol 47:131–186

    Article  PubMed  CAS  Google Scholar 

  • Krull H, Dintzis HL, Baker FL (1988) Microfibril generating factor from the cellulase of Trichoderma reesei. Biotechnol Bioeng 31:321–327

    Article  CAS  PubMed  Google Scholar 

  • Kubicek CP, Penttilä ME (1998) Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman GE, Kubicek CP (eds.) Trichoderma and Gliocladium. Enzymes, biological control and commercial applications. Taylor and Francis, London, pp 49–71

    Google Scholar 

  • Lynd LR, Weimer PJ, Zyl WH van, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  • Mandels M, Andreotti R (1978) Problems and challenges in the cellulose to cellulase fermentation. Proc Biochem 13:6–13

    CAS  Google Scholar 

  • Mandels M, Parrish FW, Reese ET (1962) Sophorose as an inducer of cellulose in Trichoderma viride. J Bacteriol 83:400–408

    PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler GH, Mazumder R, Nikolskaya AN, Panchenko AR, Rao BS, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, Bryant SH (2003). CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31:383–387

    Article  PubMed  Google Scholar 

  • Margolles-Clark E, Tenkanen M, Soderlund H, Penttila M (1996) Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain. Eur J Biochem 237:553–560

    Article  PubMed  CAS  Google Scholar 

  • Nakari-Setala T, Aro N, Ilmen M, Munoz G, Kalkkinen N, Penttila M (1997) Differential expression of the vegetative and spore-bound hydrophobins of Trichoderma reesei—cloning and characterization of the hfb2 gene. Eur J Biochem 248:415–423

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, Heijne G von (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schmoll M, Kubicek CP (2003) Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review. Acta Microbiol Immunol Hung 50:125–145

    Article  PubMed  CAS  Google Scholar 

  • Schmoll M, Zeilinger S, Mach RL, Kubicek CP (2004) Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet Biol 41:877–887

    Article  PubMed  CAS  Google Scholar 

  • Schmoll M, Franchi L, Kubicek CP (2005) The Hypocrea jecorina PAS/LOV domain protein ENVOY renders cellulase gene expression light-dependent. (submitted for publication)

  • Srebotnik E, Messner K (1994) A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl Environ Microbiol 60:1383–1386

    PubMed  CAS  Google Scholar 

  • Sternberg D, Mandels GR (1979) Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol 139:761–769

    PubMed  CAS  Google Scholar 

  • Thykaer J, Nielsen J (2003) Metabolic engineering of beta-lactam production. Metab Eng 5:56–69

    Article  PubMed  CAS  Google Scholar 

  • Torigoi E, Henrique-Silva F, Escobar-Vera J, Carle-Urioste JC, Crivellaro O, El-Dorry H, El-Gogary S (1996) Mutants of Trichoderma reesei are defective in cellulose induction, but not basal expression of cellulase-encoding genes. Gene 173:199–203

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B (2004) Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl Microbiol Biotechnol (e-pub ahead of print)

    Google Scholar 

  • Tusnady GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506

    Article  PubMed  CAS  Google Scholar 

  • Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  PubMed  CAS  Google Scholar 

  • Vaheri MP, Leisola M, Kaupinnen V (1979) Transglycosylation products of the cellulase system of Trichoderma reesei. Biotechnol Lett 1:41–46

    Article  CAS  Google Scholar 

  • Wang W, Liu J, Chen G, Zhang J, Gao P (2003) Function of a low molecular weight peptide from Trichoderma pseudokoningii S38 during cellulose biodegradation. Curr Microbiol 46:371–379

    Article  PubMed  CAS  Google Scholar 

  • Wuchiyama J, Kimura M, Yamaguchi I (2002) A trichothecene efflux pump encoded by Tri102 in the biosynthesis gene cluster of Fusarium graminearum. J Antibiot (Tokyo) 53:196–200

    Google Scholar 

  • Yabe K, Nakajima H (2004) Enzyme reactions and genes in aflatoxin biosynthesis. Appl Microbiol Biotechnol 64:745–755

    Article  PubMed  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  PubMed  CAS  Google Scholar 

  • Zeilinger S, Haller M, Mach RL, Kubicek CP (2000) Molecular characterization of a cellulase-negative mutant of Hypocrea jecorina. Biochem Biophys Res Commun 277:581–588

    Article  PubMed  CAS  Google Scholar 

  • Zeilinger S, Schmoll M, Pail M, Mach RL, Kubicek CP (2003) Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Mol Genet Genomics 270:46–55

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Austrian Science Foundation (FWF P-17325) to C.P.K. The H. jecorina/T. reesei genome sequencing project was funded by the United States Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Schmoll.

Additional information

Communicated by U. Kück

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmoll, M., Kubicek, C.P. ooc1, a unique gene expressed only during growth of Hypocrea jecorina (anamorph: Trichoderma reesei) on cellulose. Curr Genet 48, 126–133 (2005). https://doi.org/10.1007/s00294-005-0585-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0585-1

Keywords

Navigation