Skip to main content
Log in

Enhanced cellulolytic enzyme production by the synergism between Trichoderma reesei RUT-C30 and Aspergillus niger NL02 and by the addition of surfactants

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Two improvement approaches comprising of a mixed culture of Trichoderma reesei and Aspergillus niger and the addition of surfactants were employed in this study in order to enhance cellulolytic enzyme production as well as to improve the composition. Different delay times of A. niger inoculation (0, 24, and 48 h) and inoculum ratios of T. reesei versus A. niger (1:1 and 5:1) derived six mixed culture forms, which were 0 h/1:1, 0 h/5:1, 24 h/1:1, 24 h/5:1, 48 h/1:1, and 48 h/5:1. It was found that the form 48 h/5:1 allowed the highest FPA, 3.30 ± 0.34 IU/mL, and a relatively high BGA, 1.01 ± 0.25 IU/mL, thereafter being selected for the subsequent improvement step addition of surfactants. Among the three surfactants, including Triton X-100, CHAPS and sodium taurocholate, the third one was found to be the best one giving rise to the highest FPA and BGA, 5.02 ± 0.40 and 1.48 ± 0.28 IU/mL, respectively. Differently sourced cellulases were compared in the enzymatic hydrolysis of steam-exploded corn stover (SECS). Moreover, the cellulase produced by the mixed culture form 48 h/5:1 using SECS as a substrate showed the highest yield at 80.93 ± 2.04%, indicating that the composition of this cellulase was improved by the mixed culture of T. reesei and A. niger. The results validate that these two improvement approaches are efficient and applicable in cellulase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, I., I. Kim, K. Kang, H. Sohn, I. Rhee, I. Jin, and H. Jang (2010) Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377. Proc. Biochem. 45: 487–492.

    Article  CAS  Google Scholar 

  2. Wyman, C. E. (2007) What is (and is not) vital to advancing cellulosic ethanol. Trend in Biotechnol. 25: 153–157.

    Article  CAS  Google Scholar 

  3. Zhang, P. Y. H., M. E. Himmel, and J. R. Mielenz (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24: 452–481.

    Article  CAS  Google Scholar 

  4. Wooley, R., M. Ruth, D. Glassner, and J. Sheehan (1999) Process design and costing of bioethanol technology: A tool for determining the status and direction of research and development. Biotechnol. Progr. 15: 794–803.

    Article  CAS  Google Scholar 

  5. Yang, B. and C. E. Wyman (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod. Bior. 2: 26–40.

    Article  CAS  Google Scholar 

  6. Holtzapple, M. T., A. E. Humphrey, and J. D. Taylor (1989) Energy requirement for the size reduction of poplar and aspen wood. Biotechnol. Bioeng. 33: 207–210.

    Article  CAS  Google Scholar 

  7. Börjesson, J., M. Enqvist, B. Sipos, and F. Tjerneld (2007) Effect of poly(ethylene glycol) on enzymatic hydrolysis and adsorption of cellulase enzymes to pretreated lignocelluloses. Enz. Microb. Technol. 41: 186–195.

    Article  Google Scholar 

  8. Ruiz, E., C. Cara, P. Manzanares, M. Ballesteros, and E. Castro (2008) Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enz. Microb. Technol. 42: 160–166.

    Article  CAS  Google Scholar 

  9. Khan, A.W., D. Wall, and L. van den Berg (1981) Fermentative conversion of cellulose to acetic acid and cellulolytic enzyme production by a bacterial mixed culture obtained from sewage sludge. Appl. Env. Microbiol. 41: 1214–1218.

    CAS  Google Scholar 

  10. Panda, T., V. S. Bisaria, and T. K. Ghose (1983) Studies on mixed culture for cellulase and hemicellulase production part-1: Improvement of medium for the mixed culture of Trichoderma reesei D1-6 and Aspergillus wentii Pt 2804. Biotechnol. Lett. 5: 767–772.

    Article  CAS  Google Scholar 

  11. Duff, S. J. B. (1985) Cellulase and beta-glucosidase production by mixed culture of Trichoderma reesei RUT C30 and Aspergillus phoenicis. Biotechnol. Lett. 7: 185–190.

    Article  CAS  Google Scholar 

  12. Friedrich, J., A. Cimerman, and A. Perdih (1987) Mixed culture of Aspergillus awamori and Trichoderma reesei for bioconversion of apple distillery waste. Appl. Microbiol. Biotechnol. 26: 299–303.

    Article  CAS  Google Scholar 

  13. Soundar, S. and T. S. Chandra (1990) Anaerobic digestion of cellulose by pure and mixed bacterial cultures. J. Indian Microbiol. 5: 269–276.

    Article  CAS  Google Scholar 

  14. Castillo, M. R., M. Gutierrez-Correa, J. C. Linden, and R. P. Tengerdy (1994) Mixed culture solid substrate fermentation for cellulolytic enzyme production. Biotechnol. Lett. 16: 967–972.

    Article  CAS  Google Scholar 

  15. Gutierrez-Correa, M. and R. P. Tengerdy (1997) Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol. Lett. 19: 665–667.

    Article  CAS  Google Scholar 

  16. Gutierrez-Correa, M., L. Portal, P. Moreno, and R. P. Tengerdy (1999) Mixed culture solid fermentation of Trichoderma reesei and Aspergillus niger on sugar bagasse. Bioresour. Technol. 68: 173–178.

    Article  CAS  Google Scholar 

  17. Garcia-Kirchner, O., M. Muñoz-Aguilar, R. Pérez-Villalva, and C. Huitrón-Vargas (2002) Mixed submerged fermentation with two filamentous fungi for cellulolytic and xylanolytic enzyme production. Appl. Biochem. Biotechnol. 98-100: 1105–1114.

    Article  CAS  Google Scholar 

  18. Alam, M. D. Z., A. Fakhru’l-Razi, S. Abd-Aziz, and A. H. Molla (2003) Optimization of compatible mixed cultures for liquid state bioconversion of municipal wastewater sludge. Water Air Soil Pollution 149: 113–126.

    Article  CAS  Google Scholar 

  19. Wen, Z., W. Liao, and S. Chen (2005) Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Proc. Biochem. 40: 3087–3094.

    Article  CAS  Google Scholar 

  20. Ahamed, A. and P. Vermette (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem. Eng. J. 42: 41–46.

    Article  CAS  Google Scholar 

  21. Reese, E. T. and A. Manguire (1969) Surfactants as stimulants of enzyme production by microorganisms. Appl. Environ. Microbiol. 17: 242–247.

    CAS  Google Scholar 

  22. Shewale, J. G. and J. C. Sadana (1978) Cellulase and β-glucosidase production by a basidiomycete species. Canadian J. Microbiol. 24: 1204–1216.

    Article  CAS  Google Scholar 

  23. Kuhad, R. C., M. Kumar, and S. Singh (1994) A hypercellulolytic mutant of Fusarium oxysporum. Lett. Appl. Microbiol. 19: 397–400.

    Article  CAS  Google Scholar 

  24. Ahuja, S. K., G. M. Ferreira, and A. R. Moreira (2004) Production of an endoglucanase by the shipworm bacterium Teredinobacter turnirae. J. Ind. Microbiol. Biotechnol. 31: 41–47.

    Article  CAS  Google Scholar 

  25. Mandels, M., J. E. Medeiros, R. E. Andreotti, and F. H. Bissett (1981) Enzymatic hydrolysis of cellulose: Evaluation of cellulase culture filtrates under use conditions. Biotechnol. Bioeng. 23: 2009–2026.

    Article  CAS  Google Scholar 

  26. Ghose, T. K. (1987) Measurement of cellulose activities. Pure Appl. Chem. 59: 257–268.

    Article  CAS  Google Scholar 

  27. Fang, H., C. Zhao, and X. Y. Song (2010) Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: Response surface methodology or using cellulase from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NL02. Bioresour. Technol. 101: 4111–4119.

    Article  CAS  Google Scholar 

  28. Juhász, T., K. Kozma, Z. Szengyel, and K. Réczey (2003) Production of β-glucosidase in mixed culture of Aspergillus niger BKMF 1305 and Trichoderma reesei RUT C30. Food Technol. Biotechnol. 41: 49–53.

    Google Scholar 

  29. Pardo, A. G. (1996) Effect of Surfactants on Cellulase Production by Nectria catalinensis. Curr. Microbiol. 33: 275–278.

    Article  CAS  Google Scholar 

  30. Juhász, T., Z. Szengyel, K. Réczey, M. Siika-Aho, and L. Viikari (2005) Characterization of cellulases produced by Trichoderma reesei on various carbon sources. Proc. Biochem. 40: 3519–3525.

    Article  Google Scholar 

  31. Kim, S. and B. E. Dale (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26: 361–375.

    Article  Google Scholar 

  32. Chen, M., J. Zhao, and L. Xia (2008) Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohyd. Polym. 71: 411–415.

    Article  CAS  Google Scholar 

  33. Himmel, M. E., S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Sci. 315: 804–807.

    Article  CAS  Google Scholar 

  34. Yang, B. and C. E. Wyman (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 94: 611–617.

    Article  CAS  Google Scholar 

  35. Kumar, R. and C. E. Wyman (2009) Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol. Bioeng. 102: 1544–1557.

    Article  CAS  Google Scholar 

  36. Kumar, R. and C. E. Wyman (2009) Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol. Bioeng. 103: 252–267.

    Article  CAS  Google Scholar 

  37. Liu, J., X. Yuan, G. Zeng, J. Shi, and S. Chen (2006) Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Proc. Biochem. 41: 2347–2351.

    Article  CAS  Google Scholar 

  38. Rodrigues, L., I. M. Banat, J. Teixeira, and R. Oliveira (2006) Biosurfactants: potential applications in medicine. J. Antimicrob. Chemoth. 57: 609–618.

    Article  CAS  Google Scholar 

  39. Zhao, J. and L. Xia (2009) Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using a recombinant yeast strain. Fuel Proc. Technol. 90: 1193–1197.

    Article  CAS  Google Scholar 

  40. Zhang, J., Y. Zhong, X. Zhao, and T. Wang (2010) Development of the cellulolytic fungus Trichoderma reesei strain with enhanced β-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter. Bioresour. Technol. 101: 9815–9818.

    Article  CAS  Google Scholar 

  41. Wang, B. and L. Xia (2011) High efficient expression of cellobiase gene from Aspergillus niger in the cells of Trichoderma reesei. Bioresour. Technol. 102: 4568–4572.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Yang Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, H., Zhao, C., Song, XY. et al. Enhanced cellulolytic enzyme production by the synergism between Trichoderma reesei RUT-C30 and Aspergillus niger NL02 and by the addition of surfactants. Biotechnol Bioproc E 18, 390–398 (2013). https://doi.org/10.1007/s12257-012-0562-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0562-8

Keywords

Navigation