Skip to main content

Rapid Bioconversion of Lignocellulosic Biomass by Fungi

  • Chapter
  • First Online:
Mycodegradation of Lignocelluloses

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungal degradation of lignocellulosic materials brings a variety of changes in their bio-physico-chemical properties. Lower digestibility of various agricultural residues can be enhanced by fungal treatment. Fungi have numerous applications and biotechnological potential for various industries including chemicals, fuel, pulp, and paper. The capability of fungi to degrade lignocelluloses containing raw materials is due to their highly effective enzymatic system. Along with the hydrolytic enzymes consisting of cellulases and hemicellulases, responsible for polysaccharide degradation, they have a unique nonenzymatic oxidative system which together with lignolytic enzymes is responsible for lignin modification and degradation. It can improve the nutritional quality of lignocellulosic residues by degrading lignin and converting complex polysaccharides into simple sugars. Changes in physical qualities of lignocellulosic biomass that are texture, color, and aroma have been an interesting area of study along with chemical properties. Degradation of lignocellulose not only upgrades the quality of degraded biomass, but helps simultaneous production of different commercial enzymes and other by-products of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Azeem HHM (2001) Some factors affecting the composting process of rice straw. Ann Agricul Sci Cairo 46(2):525–542

    Google Scholar 

  • Ahamed A, Vermette P (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42:41–46

    Article  CAS  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology. Wiley-Eastern Ltd, New Delhi, pp 163–173

    Google Scholar 

  • Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3(1):1–11

    Article  CAS  Google Scholar 

  • Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arantes V, Goodell B (2014) Current understanding of brown-rot fungal biodegradation mechanisms: a review. In: Schultz TP, Goodell B, Nicholas DD (eds) Deterioration and protection of sustainable biomaterials. American Chemical Society, Mississippi, pp 4–21

    Google Scholar 

  • Asim N, Emdadi Z, Mohammad M, Yarmo MA, Sopian K (2015) Agricultural solid waste for green desiccant applications: an overview of research achievement, opportunities and perspectives. J Clean Prod 91:26–35

    Article  Google Scholar 

  • Baca MT, Esteban E, Almendros G, Sanchez-Raya AJ (1993) Changes in the gas phase of compost during solid state fermentation of sugarcane bagasse. Bioresour Technol 44:5–8

    Article  CAS  Google Scholar 

  • Bakalova N, Petrova S, Atev A, Bhat M, Kolev D (2002) Biochemical and catalytic propoerties of endo-1, 4 xylanase from Thermomyces lanuginosus (wild and mutant strains). Biotechnol Lett 24:1167–1172

    Article  CAS  Google Scholar 

  • Batt CA (1991) Biomass. In: Mosses U, Cape RE (eds) Biotechnology, the science and the business. Harvard Academic Press, New York, pp S21–S36

    Google Scholar 

  • Beckham GT, Bomble YJ, Bayer EA, Himmel ME, Crowley MF (2011) Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotechnol 22(2):231–238

    Article  CAS  PubMed  Google Scholar 

  • Beg S, Zafar SI, Saha FH (1986) Rice husk biodegradation by Pleurotus ostreatus to produce a ruminant feed. Agric Wastes 17:15–21

    Article  Google Scholar 

  • Berrin JG, Navarro D, Couturier M, Olive C, Grisel S, Haon M, LesageMeessen L (2012) Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion. Appl Environ Microbiol 78(18):6483–6490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat KM, Smith DC, Wood TM, Grassi G. (ed), Delmon B (ed) Molle JF (ed), Zibetta H (1987) Screening of mesophilic and thermophilic fungi for extracellular xylanase and beta xylosidase activity. Biomass for energy and industry. In: 4th EC conference. Proceeding of the international conference, Orleans, 11–15 May 1987, pp 778–782

    Google Scholar 

  • Bhardwaj KKR, Gaur AC (1985) Recycling of organic waste. All India coordinated research project on microbiological decomposition and reycling of farm and city wastes, pp 1–104

    Google Scholar 

  • Bhumibhamon O, Chaiyapol K, Sirisansanee-Yakul S (1988) Studies on chemical and environmental changes during composting. Recent advances in biotechnology and applied biology. In: Proceedings of English international conference on global impacts of applied microbiology and international conference on applied biology and biotechnology, Hong Kong, 1–5 Aug 1988, pp 587–594

    Google Scholar 

  • Bilay VT, Elliott TJ (1995) Interaction of thermophilic fungi from mushroom compost in different agar media and temperatures Mushroom Science xiv, volume 1. In: Proceedings of the 14th international congress on the science and cultivation of edible fungi, Oxford, 17–22 Sept 1995, pp 251–255

    Google Scholar 

  • Bischof RJ, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact 15(1):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas SR, Janar SC, Mishra AK, Nanda G (1990) Production, purification and characterization of xylanase from a hyperxylanolytic mutant of Aspergillus ochraceus. Biotechnol Bioeng 35:244–251

    Article  CAS  PubMed  Google Scholar 

  • Bonugli-Santos RC, Durrant LR, Silva M, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb Technol 46:32–37

    Article  CAS  Google Scholar 

  • Breccia JS, Bettucci L, Piaggio M, Sinergi F (1997) Degradation of cane bagasse by several white rot fungi. Acta Biotechnol 17(2):177–184

    Article  CAS  Google Scholar 

  • Brunecky R, Alahuhta M, Xu Q, Donohoe BS, Crowley MF, Kataeva IA, Bomble YJ (2013) Revealing nature’s cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342(6165):1513–1516

    Article  CAS  PubMed  Google Scholar 

  • Bugg TD, Rahmanpour R (2015) Enzymatic conversion of lignin into renewable chemicals. Curr Opin Chem Biol 29:10–17

    Article  CAS  PubMed  Google Scholar 

  • Carrasco T, Valino E, Medina I, Ravelo D (1999) Design and evaluation of a bioreactor for solid state fermentation. Cuba J Agric Sci 33(4):409–414

    CAS  Google Scholar 

  • Castellanos OF, Sinitsyn AP, Vlasenko EY (1995) Evaluation of hydrolysis constitution of cellulosic materials by Penicillium cellulase. Bioresour Technol 52:109–117

    Article  CAS  Google Scholar 

  • Chahal DS (1985) Solid state fermentation with Trichoderma reesei for cellulase production. Appl Environ Microbiol 49:205–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplin M (2016) Water structure and science. http://www1.lsbu.ac.uk/water/cellulose.htm

  • Chen (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose: theory and practice. Springer Netherlands, Dordrecht, pp 25–71

    Chapter  Google Scholar 

  • Christensen CM, Kaufman HH (1974) Microflora. In: Christensen M (ed) Storage of cereal grains and their products. American Association of Cereal Chemists, Eagan, pp 158–192

    Google Scholar 

  • Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145

    Article  CAS  PubMed  Google Scholar 

  • Conrad D (1981) Enzymatic hydrolysis of xylans 1A high xylanase and xylosidase producing strain of Aspergillus niger. Biotechnol Lett 3:345–350

    Article  CAS  Google Scholar 

  • Cosgrove (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove LLC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43(12):1436–1444

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850–861

    Article  CAS  PubMed  Google Scholar 

  • Courtade G, Wimmer R, Rohr AK, Preims M, Felice AK, Dimarogona M, Aachmann FL (2016) Interactions of a fungal lytic polysaccharide monooxygenase with beta-glucan substrates and cellobiose dehydrogenase. Proc Natl Acad Sci U S A 113(21):5922–5927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couturier M, Berrin JG (2013) The saccharification step: the main enzymatic components. In: Faraco V (ed) Lignocellulose conversion: enzymatic and microbial tools for bioethanol production. Springer, Berlin, Heidelberg

    Google Scholar 

  • Couturier M, Bennati-Granier C, Urio MB, Ramos LP, Berrin JG (2016) Fungal enzymatic degradation of cellulose. In: Green fuels technology, pp 133–146

    Chapter  Google Scholar 

  • Cragg SM, Beckham GT, Bruce NC, Bugg TD, Distel DL, Dupree P, Zimmer M (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford JH (1983) Composting of agriculture waste—a review. Process Biochem 18:14–18

    Google Scholar 

  • Currie JA, Festenstein GN (1971) Factors defining spontaneous heating and ignition of hay. J Sci Food Agric 22:223–320

    Article  Google Scholar 

  • Damaso MCT, Andrade CMMC, Pereira-Junior N, Finkelstein M, Davision BH (2000) Use of corncob for endoxylanase production by thermophilic fungus Thermomyces lanuginosus IOC-4145. Appl Biochem Biotechnol 84–86:821–834

    Article  PubMed  Google Scholar 

  • De Lima DR, Silveira MHL, Del Rio L, Ramos LP (2016) Pre-treatment processes for cellulosic ethanol production: processes integration and modeling for the utilization of lignocellulosics such as sugarcane straw. In: Soccol RC, Brar KS, Faulds C, Ramos PL (eds) Green fuels technology: biofuels. Springer International Publishing, Cham, pp 107–131

    Chapter  Google Scholar 

  • Dekker RFH (1983) Bioconversion of hemicellulose: aspects of hemicellulose production by Trichoderma reesei. M. 9414 and enzymatic saccharification of hemicellulose. Biotechnol Bioeng 30:1127–1146

    Article  Google Scholar 

  • Deploey JJ, Fergus CL (1975) Growth and sporulation of thermophilic fungi and actinomycetes in 0 N atmospheres. Mycologia 67:780–797

    Article  CAS  PubMed  Google Scholar 

  • Dhillon A, Khanna S (2000) Production of a thermostable alkali-tolerant xylanase from Bacillus circulans AV16 grown on wheat straw. World J Microbiol Biotechnol 16:325–327

    Article  CAS  Google Scholar 

  • Dighe AS, Khandeparkar VG, Berabet SM (1988) Production of single cell protein from enzymatic cellulosic hydrolysates. Indian J Microbiol 28:128–130

    Google Scholar 

  • Din N, Damude HG, Gilkes NR, Miller RC, Warren RA, Kilburn DG (1994) C1-Cx revisited: intra molecular synergism in a cellulase. Proc Natl Acad Sci 91(24):11383–11387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding SY, Liu YS (2012) Imaging cellulose using atomic force microscopy. Methods Mol Biol 908:23–30

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA (2013) Microbiology: break down the walls. Nature 493(7430):36–37

    Article  CAS  PubMed  Google Scholar 

  • Doi RH (2008) Cellulases of mesophilic microorganisms: cellulosome and noncellulosome producers. Ann N Y Acad Sci 1125:267–279

    Article  CAS  PubMed  Google Scholar 

  • Durand A, Broise D, Blachere H, Broise D (1988) Laboratory scale bioreactor for solid state process. J Biotechnol 8(1):59–66

    Article  CAS  Google Scholar 

  • Eibinger M, Ganner T, Bubner P, Rosker S, Kracher D, Haltrich D, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency. J Biol Chem 289(52):35929–35938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espino-Rammer L, Ribitsch D, Przylucka A, Marold A, Greimel KJ, Herrero Acero E, Druzhinina IS (2013) Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly(ethylene terephthalate) when expressed as fusion proteins. Appl Environ Microbiol 79(14):4230–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falade AO, Nwodo UU, Iweriebor BC, Green E (2017) Lignin peroxidase functionalities and prospective applications. Microbiologyopen 6:e00394

    Article  CAS  Google Scholar 

  • Frommhagen M, Mutte SK, Westphal AH, Koetsier MJ (2017) Boosting LPMO driven lignocellulose degradation by polyphenol oxidase activated lignin building blocks. Biotechnol Biofuels 10:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost GM, Moss DA (1987) Production of enzymes by fermentation. In: Rehn HJ, Reed G (eds) Biotechnology, vol 79. VCH. Pub., FRG, pp 65–221

    Google Scholar 

  • Gandarias I, Luis P (2013) Hydrotreating catalytic processes for oxygen removal in the upgrading of bio-oils and bio-chemicals. https://doi.org/10.5772/52581

  • Garg SK, Neelakanthan S (1982) Effects of nutritional factors on cellulase enzyme and microbial protein production by Aspergillus terreus and its evaluation. Biotechnol Bioeng 24:109–125

    Article  CAS  PubMed  Google Scholar 

  • Gaur AC, Sadasivam KV, Mathur RS, Magu SP (1982) Role of mesophilic fungi in composting. Agric Wastes 4:453–460

    Article  Google Scholar 

  • George SP, Ahmad A, Rao MB (2001) A novel thermostable xylanase from Thermomonospora sp. influence of conditions on thermostability. Bioresour Technol 78:221–224

    Article  CAS  PubMed  Google Scholar 

  • Gerrits JPG, Amsing JGM, Straatsma G, Griensven LJLD, Elliott TJ (1995) Phase I process in tunnels for the production of Agaricus bisporus compost with special reference to the importance of water. Mushroom science and cultivation of edible fungi, Oxford, 17–22 Sept 1995, pp 203–211

    Google Scholar 

  • Girard V, Dieryckx C, Job C, Job D (2013) Secretomes: the fungal strike force. Proteomics 13(3–4):597–608

    Article  CAS  PubMed  Google Scholar 

  • Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    Article  CAS  PubMed  Google Scholar 

  • Giroux H, Vialal P, Bouchard J, Lamy F (1988) Degradation of kraft indulin lignin by Streptomyces viridosporus and Streptomyces badius. Appl Environ Microbiol 54:3064–3070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glass NL, Schmoll M, Cat JHD, Coradetti S (2013) Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol 67:477–498

    Google Scholar 

  • Gokhale DV, Puntamabekar US, Deobagkar DN (1986) Xylanase and p-glucosidase production by Aspergillus niger. NCIM 1207. Biotechnol Lett 8:137–138

    Article  CAS  Google Scholar 

  • Golueke CG (1992) Bacteriology of composting. Biocycle 33:55–57

    Google Scholar 

  • Gourlay K, Hu J, Arantes V, Andberg M, Saloheimo M, Penttila M, Saddler J (2013) Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass. Bioresour Technol 142:498–503

    Article  CAS  PubMed  Google Scholar 

  • Grajek W (1987) Production of D-xylanases by thermophilic fungi using different methods of culture. Biotechnol Lett 9:353–356

    Article  CAS  Google Scholar 

  • Grajek W (1988) Production of protein by thermophilic fungi from sugar beet pulp in solid state fermentation. Biotechnol Bioeng 32(1):255–260

    Article  CAS  PubMed  Google Scholar 

  • Griffith GW, Ozkose E, Theodoroua MK, Davies DR (2009) Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources. Fungal Ecol 2:87–97

    Article  Google Scholar 

  • Guillén F, Martinez AT, Martinez MJ (1992) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem 209:603–611

    Article  PubMed  Google Scholar 

  • Gulati SL (1989) Physiological and enzymological problems of Trichoderma reesei a.M. 9414 associated with scale up of the process. In: Rameshwar S (ed). In: Proc. natl. seminar on biotechnol. lignin degradation. Indian Vet. Res. Inst., Izatnagar, 20–21 Dec, pp 64–71

    Google Scholar 

  • Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sust Energ Rev 42:712–725

    Article  CAS  Google Scholar 

  • Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Ezeji T (2016) Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem Sci 41(7):633–645

    Article  CAS  PubMed  Google Scholar 

  • Gusakov AV (2013) Cellulases and hemicellulases in the 21st century race for cellulosic ethanol. Biofuels 4(6):567–569

    Article  CAS  Google Scholar 

  • Gutiérrez A, Caramelo L, Prieto A, Martínez MJ (1994) Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. Appl Environ Microbiol 60:1783–1788

    Google Scholar 

  • Gutierrez-Correa M, Tengerdy RP (1998) Xylanase production of fungal mixed culture solid state substrate fermentation on sugarcane bagasse. Biotechnol Lett 20:45–47

    Article  CAS  Google Scholar 

  • Gutierrez-Correa M, Portal L, Moreno P, Tengerdy RP (1999) Mixed culture solid state fermentation of Trichoderma reesei with Aspergillus niger on sugarcane bagasse. Bioresour Technol 68:173–178

    Article  CAS  Google Scholar 

  • Hang Won K, Inkoo R, Minflee N, Hyang P, Fin Ho K, Kang HW, Rhee IK, Nam MH, Park HM, Kim JH (1995) J Agric Sci Soil Fertilizers 37(2):26 and 274

    Google Scholar 

  • Hankin L, Anagniostakis SKL, Poincelot RP (1976) Compost by biodegradation of leaves. In: Sharply MJ, Kaplan AM (eds) Proc III international biodegradation symposium. Appl. Sci. Pub., London, pp 701–709

    Google Scholar 

  • He X, Traina SJ, Logan TJ (1992) Chemical properties of municipal solid waste composts. J Environ Qual 54:1316–1323

    Google Scholar 

  • Hegarty BM, Curran PMT (1985) The bio-deterioration of beach by marine and non-marine fungi in response to temperature, pH, light and dark. Int Biodeterior Bull 21:11–18

    Google Scholar 

  • Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10(2):122–126

    Article  CAS  PubMed  Google Scholar 

  • Henna P (1975) Model for decomposition of organic material by microorganisms. Soil Biol Biochem 7:161–169

    Article  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for bio-fuels production. Science 315:804–807

    Article  CAS  PubMed  Google Scholar 

  • Himmel M, Xu Q, Luo Y, Ding S, Lamed R, Bayer E (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1(2):323–341

    Article  CAS  Google Scholar 

  • Holder NHM, Kilian SG, Preez JC (1989) Yeast biomass from bagasse hydrolysates. Biol Wastes 28:239–246

    Article  CAS  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5(1):45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwath WR, Elliott LF (1996) Rye grass straw component decomposition during mesophiles and thermophilic incubations. Biol Fertil Soils 21:227–232

    Article  Google Scholar 

  • Ishihara T (1983) Effect of pH in the oxidation of syringic acid by fungal laccase. Mokuzai Gakkaishi 29:801–805

    CAS  Google Scholar 

  • Jain A, Johri BN, Jain A (1999) Partitioning of an extracellular xylanase produced by a thermophilic fungus Melanocarpus albomyces IIS-68 in an aqueous two phase system. Bioresour Technol 67(2):205–207

    Google Scholar 

  • Jaramillo PMD, Gomes HAR, Monclaro AV, Silva COG (2015) Lignocellulose degrading enzymes: an overview of the global market. In: Gupta VK, Mach RL, Sreenivasaprasad S (eds) Fungal biomolecules: sources, applications and recent developments. Wiley, Chichester, pp 73–85

    Google Scholar 

  • Jeffries TW, Choi S, Kirk TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol 42:290–296

    Google Scholar 

  • Jhorar BS, Phogat V, Malik RS (1991) Kinetics of composting rice straw with glue waste at different carbon: nitrogen ratios in a semiarid environment. Arid Soil Res Rehabil 5(4):297–306

    CAS  Google Scholar 

  • Johansen KS (2016) Lytic polysaccharide monooxygenases: the microbial power tool for lignocellulose degradation. Trends Plant Sci 21(11):926–936

    Article  CAS  PubMed  Google Scholar 

  • Kahlon SS, Dass SK (1987) Biological conversion of paddy straw into feed. Biol Wastes 22:11–21

    Article  Google Scholar 

  • Kakezawa M, Mimura A, Takahara Y (1992) Application of two step composting process to rice straw compost. Soil Sci Plant Nutr 38(1):43–50

    Article  Google Scholar 

  • Kalogeris E, Christakopoulos P, Katapodis I, Alexiou A, Vlachou S, Kekos D, Macris BJ (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural waste. Process Biochem 38:1099–1104

    Article  CAS  Google Scholar 

  • Kamra DN, Zadrazil F (1986) Influence of oxygen and carbon dioxide on lignin degradation in solid state fermentation of wheat straw with Stropharia rugosoannulata. Biotechnol Lett 7:345–340

    Google Scholar 

  • Kang K, Wang S, Lai G, Liu G, Xing M (2013) Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose. BMC Biotechnol 13:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanotra S, Mathur RS (1994) Biodegradation of paddy straw with cellulolytic fungi and its application on wheat crop. Bioresour Technol 47:185–188

    Article  CAS  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87

    Article  CAS  PubMed  Google Scholar 

  • Kim L, HJ CIG, Kim KH (2014) Synergistic proteins for the enhanced enzymatic hydrolysis of cellulose by cellulase. Appl Microbiol Biotechnol 98(20):8469–8480

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameter on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    Article  CAS  Google Scholar 

  • Klamer M, Sochting U, Szmid, RAK (1998) Fungi in a controlled compost system with special emphasis on the thermophilic fungi. In: Proceedings of the international symposium on composting and use of composted materials for horticulture, Auchincruve, Ayr, V.K. 5–11 Apr Acta Horticulture, vol 469, pp 405–413

    Google Scholar 

  • Kracher D, Scheiblbrandner S, Felice AKG, Breslmayr E, Preims M, Ludwicka K, Ludwig R (2016) Extracellular electron transfer systems fuel cellulose oxidative degradation. Science 352(6289):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Kracher D, Ludwig R (2016) Cellobiose dehydrogenase: an essential enzyme for lignocellulose degradation in nature—a review. J Land Manag Food Environ 67:145–163

    CAS  Google Scholar 

  • Krishna C, Chandrasekara M (1996) Banana waste as substrate for alpha-amylase production by Bacillus subtilis (B.T.K. 106) under solid state fermentation. Appl Microbiol Biotechnol 46(2):106–111

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pre-treatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Ladisch MR, Lin KW, Voloch M, Tsao G (1983) Process considerations in the enzymatic hydrolysis of biomass. Enzyme Microbial Technol 5:8–16

    Article  Google Scholar 

  • Lei-Fei V, Gheynst JS, Fei L (1998) Community structure analysis of rice straw and grape pomace. Composting using phospholipid fatty acid analysis. In: ASAE annual international meeting, Orlando, 12–16 July 1998, p 13

    Google Scholar 

  • Linton SM, Greenaway P (2004) Presence and properties of cellulase and hemicellulase enzymes of the gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes. J Exp Biol 207:4095–4104

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ma Y, Zhang M (2015) Research advances in expansins and expansion like proteins involved in lignocellulose degradation. Biotechnol Lett 37(8):1541–1551

    Google Scholar 

  • Ljungdahl LG (2008) The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann N Y Acad Sci 1125:308–321

    Article  CAS  PubMed  Google Scholar 

  • Lopez MJ, Elorrieta MA, Vargas-Garcia MC, Suarez Estrella F, Moreno J (2002) The effect of aeration on the biotransformation of lignocellulosic wastes by white rot fungi. Bioresour Technol 81:123–129

    Article  CAS  PubMed  Google Scholar 

  • Lo Leggio L, Simmons TJ, Poulsen JCN, Frandsen KEH, Hemsworth GR, Stringer MA, Walton PH (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 22(6):5961

    Article  CAS  Google Scholar 

  • Mani MT, Marimuthu T (1992) Utilization of Pleurotus spp. for decomposing coconut coir pith. Mushroom Res 1(1):49–51

    Google Scholar 

  • Marjamaa K, Toth K, Bromann PA, Szakacs G, Kruus K (2013) Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Enzym Microb Technol 52(6–7):358–369

    Article  CAS  Google Scholar 

  • Martinez (2016) How to break down crystalline cellulose. Science 352(6289):1050–1051

    Article  CAS  PubMed  Google Scholar 

  • Maziero R, Zadrazil F (1994) Effects of different heat pre-treatments of wheat straw on its microbial activity and colonization by different tropical and sub-tropical edible mushrooms. World J Microbiol Biotechnol 10(7):374–380

    Article  CAS  PubMed  Google Scholar 

  • Mehta V, Bakshi A, Gupta JK, Kaushal SC (1990) Cellulolytic activities of Pleurotus florida on rice straw. Indian J Appl Pure Biol 5(1):15–18

    Google Scholar 

  • Miller TF, Srinivasan VR (1983) Production of single cell protein from cellulose by Aspergillus terreus. Biotechnol Bioeng 25:1509–1519

    Article  CAS  PubMed  Google Scholar 

  • Ming L, Cen X, Piel I, Cen PL (1999) Cellulose production by solid state fermentation on lignocellulosic waste from the xylose industry. Process Biochem 34:909–912

    Article  Google Scholar 

  • Moo-Young M, Moreira AR, Tengerdy RP (1983) Principles of solid state fermentation. In: Smith JE, Berry DR, Kristiansen B (eds) The filamentous fungi. Fungal technology, vol 4. Arnold Pub., London, pp 117–144

    Google Scholar 

  • Moubasher AH, Abdel-Hafez S, Abdel-Fattah HM, Moharram AM (1984) Fungi of wheat and broad bean straw composts. Thermophilic fungi. Mycopathologia 84(2–3):65–71

    Article  CAS  Google Scholar 

  • Muniswaram PKA, Charyulu NCLN (1994) Solid state fermentation of coconut coir pith for cellulase production. Enzyme Microbial Technol 16:436–490

    Article  Google Scholar 

  • Nandi N, Hajra JM, Sinha NB (1996) Microbial synthesis of humus from rice straw following two step composting process. J Indian Soc Soil Sci 44(3):413–415

    CAS  Google Scholar 

  • Nigam P, Pandey A, Prabhu KA (1988) Fermentation of bagasse by submerged fungal cultures—effect of nitrogen sources. Biol Wastes 23:313–317

    Article  CAS  Google Scholar 

  • Olayinka A, Adebaya A (1984) Effect of incubating temperatures and different sources of N and P on decomposition of saw dust in soil. Agric Waste 11:293–306

    Article  CAS  Google Scholar 

  • Ozkose E, Thomas BJ, Davies DR, Griffith GW, Theodorou MK (2001) Cyllamyces aberensis gen.nov. sp.nov, a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can J Bot 79:666–673

    Google Scholar 

  • Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Appl Biochem Biotechnol 124(1):1069–1079

    Article  Google Scholar 

  • Park YS, Yum DY, Bai DH, Yu JH (1992) Xylanase from alkaliphilic Bacillus sp.YC-335. Biosci Biotechnol Biochem 56:1355–1356

    Article  CAS  Google Scholar 

  • Patel I, Kracher D, Ma S, Garajova S, Haon M, Faulds CB, Record E (2016) Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis. Biotechnol Biofuels 20(9):108

    Article  CAS  Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Beckham GT (2015) Fungal cellulases. Chem Rev 115(3):1308–1448

    Article  CAS  PubMed  Google Scholar 

  • Qin YM, Tao H, Liu YY, Wang YD, Zhang JR, Tang AX (2013) A novel non-hydrolytic protein from Pseudomonas oryzihabitans enhances the enzymatic hydrolysis of cellulose. J Biotechnol 168(1):24–31

    Article  CAS  PubMed  Google Scholar 

  • Rajaram S, Varma A (1990) Production and characterization of xylanase from Bacillus thermoalkalophilus grown on agricultural wastes. Appl Microbiol Biotechnol 34:141–144

    Article  CAS  Google Scholar 

  • Rajarathnam S, Bano Z (1989) Pleurotus mushrooms III Biotransformation of natural lignocellulosic wastes: chemical applications and implications. Crit Rev Food Sci Nutr 28:31–113

    Article  CAS  PubMed  Google Scholar 

  • Rajarathnam S, Wankhede DB, Bano Z (1987) Degradation of rice straw by Pleurotus flabellatus. J Chem Technol Biotechnol 37:203–214

    Article  CAS  Google Scholar 

  • Rajasekaran P, Sampatkumar M (1981) Physico-chemical and microbiological properties of plant wastes treated with sewage sludge. Agric Waste 3:262–275

    Article  Google Scholar 

  • Rathner R, Petz S, Tasnadi G, Koller M (2017) Monitoring the kinetics of biocatalytic removal of the endocrine disrupting compound 17a-ethinylestradiol from differently polluted wastewater bodies. J Environ Chem Eng 5:1920–1926

    Article  CAS  Google Scholar 

  • Reese ET (1956) A microbiological process report: enzymatic hydrolysis of cellulose. Appl Microbiol 4:39–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Resch MG, Donohoe BS, Baker JO, Decker SR, Bayer EA, Beckham GT, Himmel ME (2013) Fungal cellulases and complexed cellulosomal enzymes exhibit synergistic mechanisms in cellulose deconstruction. Energy Environ Sci 6(6):1858

    Article  CAS  Google Scholar 

  • Roche N, Desgranges C, Durand A (1994) Study on the solid state production of a thermostable alpha-L-arabinofuranosidase of Thermoascus eurentiecus on sugar beet pulp. J Biochem 38(1):43–50

    CAS  Google Scholar 

  • Rocha VN, Maeda R, Pereira NF, Kern M, Elias L, Simister R, McQueenMason SJ (2016) Characterization of the cellulolytic secretome of Trichoderma harzianum during growth on sugarcane bagasse and analysis of the activity boosting effects of swollenin. Biotechnol Prog 32(2):327–336

    Article  CAS  Google Scholar 

  • Rosen, Schugerl (1983) In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. Amer. Soc. Microbial, Washington, DC

    Google Scholar 

  • Ross RC, Harris PJ (1983) The significance of thermophilic fungi in mushroom compost preparation. Sci Hortic 20(1):61–70

    Article  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291

    Article  CAS  PubMed  Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Penttilä M (2002) Swollen in, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17):4202–4211

    Google Scholar 

  • Sanches (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Sermanni GG, Annibale AD, Lena GO, Vitale NS, Mattia ED, Minelli V (1994) The production of exo-enzymes by lentinus edodes and Pleurotus ostreatus and their use for upgrading corn straw. Bioresour Technol 48:173–178

    Article  CAS  Google Scholar 

  • Shaikh SA, Khire JM, Khan M (1997) Production of beta-galactosidase from thermophilic fungus Rhizomucor sp. J Ind Microbiol Biotechnol 19(4):239–245

    Article  CAS  Google Scholar 

  • Sharma HS, Johri BN (1992) The role of thermophilic fungi in Agriculture. In: Hand book of applied mycology, vol 4. pp 707–728

    Google Scholar 

  • Sharma OK, Niwas S, Behera BK (1991) Solid state fermentation of bagasse for production of cellulase enzyme from cellulolytic fungi and extent of simultaneous production of reducing sugars in the fermenter. J Microbiol Biotechnol 6:7–14

    CAS  Google Scholar 

  • Sharma HSS, Lyons G, Chambers J (2000) Comparison of the changes in mushroom (Agaricus bisporus) during window and bunker stages of phase I and lt. Ann Appl Biol 136(1):59–68

    Article  Google Scholar 

  • Silva IS, Menezes CR, Franciscon E, Santos EC (2010) Degradation of lignosulfonic and tannic acids by ligninolytic soil fungi cultivated under microaerobic conditions. Braz Arch Biol Technol 53:693–699

    Article  CAS  Google Scholar 

  • Sims TM, Saddler J, Mabee W (2008) From 1st to 2nd generation biofuel technologies: an overview of current industry and RD activities. https://www.iea.org/publications/freepublications/publication/2nd_Biofuel_Gen.pdf

  • Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, O’Malley MA (2016) Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351(6278):1192–1195. https://doi.org/10.1126/science.aad1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanek M, Bisko NA (1982) Regulation of microbiological process in substrate for oyster mushroom (Pleurotus ostreatus) culture. Sbamik-UVT/Z-Zahradnictvi 9(3):221–233

    Google Scholar 

  • Straatsma G, Samson RA, Olijnsma TW, Op-Den-Camp HJM, Gerrits JPG, Van-Griensven LJLD (1994) Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol 60(2):454–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Straatsma G, Samson RA, Olijnsma TW, Gerrits JPG, Op-Den-Camp-HJM, Cariensven, LJLD (1995) Bioconversion of cereal straw into mushroom compost. Can J Bot 73:1019–1024

    Google Scholar 

  • Sun FF, Hong J, Hu J, Saddle JN, Fang X, Zhang Z, Shen S (2015) Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass. Enzym Microb Technol 79-80:42–48

    Article  CAS  Google Scholar 

  • Suyanto T, Ohtsuki S, Yazaki S, Ui A, Mimura (2003) Isolation of a novel thermophilic fungus Chaetomium sp. novo MS.-017 and description of its palm-oil mill fibre-decomposing properties. Appl Microbiol Biotechnol 60:581–587

    Article  CAS  PubMed  Google Scholar 

  • Takasaki K, Miura T, Kanno M, Tamaki H, Hanada S, Kamagata Y, Kimura N (2013) Discovery of glycoside hydrolase enzymes in an avicel-adapted forest soil fungal community by a metatranscriptomic approach. PLoS One 8(2):e55485. https://doi.org/10.1371/journal.pone.0055485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon F, Odier E (1988) Influence of veratryl alcohol and hydrogen peroxide on ligninase activity and ligninase production of Phanerochaete chrysosporium. Appl Environ Microbiol 54:466–472

    Google Scholar 

  • Tengerdy RP (1985) Solid state fermentation. Trends Biotechnol 3(4):96–99

    Google Scholar 

  • Tiwari VN, Pathak AN, Lehri LK (1988) Manurial value of compost enriched with rock phosphate and microbial inoculants to green gram. J Indian Soc Soil Sci 36(2):280–283

    Google Scholar 

  • Tripathi JP, Yadav JS (1991) Comparative ligninolytic and polysaccharolytic potential of an alkaliphilic basidiomycete on native lignocellulose. Int Biodeter Bull 27:49–59

    Article  CAS  Google Scholar 

  • Tsukihara T, Honda Y, Sakai R, Watanabe T (2006) Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white-rot fungus, Pleurotus ostreatus. J Biotechnol 126:431–439

    Article  CAS  PubMed  Google Scholar 

  • Vander-Gheynst JS, May BA, Karagosian M (2000) The effects of cultivation methods on the growth rate and shelf life of Lagenidium giganteum. In: ASAE annual international meeting Milwaukee, 9–12 July, p 5

    Google Scholar 

  • Venkateswarlu G, Krishna PSM, Pandey A, Rao LV, Pandey A (2000) Evaluation of Amycoatopsis mediterranei VA18 for production of rifamycin B. Process Biochem 36(4):305–309

    Google Scholar 

  • Wahyono S, Sahwan FL (1998) Solid waste composting trend and project. Biocycle 39(10):66–68

    Google Scholar 

  • Wiegant WM (1992) Growth characteristics of the thermophilic fungi Scytalidium thermophilum in relation to production of mushroom compost. Appl Environ Microbiol 58(4):1301–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DB (2008) Three microbial strategies for plant cell wall degradation. Ann N Y Acad Sci 1125:289–297

    Article  CAS  PubMed  Google Scholar 

  • Woiciechowski AL, Porto de Souza Vandenberghe L, Karp SG (2013) The pre-treatment step in lignocellulosic biomass conversion: current systems and new biological systems. In: Faraco V (ed) Lignocellulose conversion: enzymatic and microbial tools for bioethanol production. Springer, Berlin, Heidelberg

    Google Scholar 

  • Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  PubMed  Google Scholar 

  • Wyman CE, Ragauskas AJ (2015) Lignin bioproducts to enable biofuels. Biofuels Bioprod Biorefin 9(5):447–449

    Article  CAS  Google Scholar 

  • Xu Q, Luo Y, Ding SY, Himmel ME, Bu L, Lamed R, Bayer EA (2011) Multifunctional enzyme systems for plant cell wall degradation, pp 15–25

    Google Scholar 

  • Yoon JJ, Cha CJ, Kim YS, Son DW, Kim YK (2007) The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. J Microbiol Biotechnol 17:800–805

    CAS  PubMed  Google Scholar 

  • Yuan TQ, Xu F, Sun RC (2013) Role of lignin in a bio-refinery: separation characterization and valorization. J Chem Technol Biotechnol 88(3):346–352

    Article  CAS  Google Scholar 

  • Zadrazil F (1976) Release of water soluble compounds in the breakdown of straw by basidiomycetes as a basis for the utilization of straw. Z Acker Pflanzenbau 142:44–47

    CAS  Google Scholar 

  • Zadrazil F, Puniya AK (1995) Studies on effect of particle size on solid state fermentation of sugarcane bagasse into animal feed using white rot fungi. Bioresour Technol 54:85–87

    Article  CAS  Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26(9):1341–1417

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Srivastva, D., Chand, R. (2019). Rapid Bioconversion of Lignocellulosic Biomass by Fungi. In: Naraian, R. (eds) Mycodegradation of Lignocelluloses. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-23834-6_8

Download citation

Publish with us

Policies and ethics