Skip to main content
Log in

Improved 1,3-propanediol production by Escherichia coli from glycerol due to Co-expression of glycerol dehydratase reactivation factors and succinate addition

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Escherichia coli was engineered to produce 1,3-propanediol (1,3-PDO) from glycerol, an inexpensive carbon source. This was done by introducing a synthetic pathway consisting of glycerol dehydratase, glycerol dehydratase reactivation factor, and 1,3-propanediol oxidoreductase isoenzyme. The JM-30BY15AB harboring pQE30/dhaB123, yqhD and pQE15A/gdrA, gdrB produced 1,3-PDO (7.2 g/L) from glycerol, at a level higher than that produced by JM-30BY harboring pQE30/dhaB123, yqhD (4.1 g/L). When 10mM succinate was added to the medium, the titer of 1,3-PDO and the glycerol consumption increased to 9.9 and 23.84 g/L, respectively. In addition, the ratio of NADH to NAD+ increased by 43%. The titer of 1,3-PDO and glycerol consumption were 145.6 and 86.6% higher, respectively, than those from the control which harbors one vector system without gdrAB and did not include succinate addition. Under fed-batch fermentation conditions, the titer of 1,3-PDO and its conversion yield from glycerol were 13.11 g/L and 0.49 g/g, respectively. This dual-vector system may be a useful approach for the co-expression of recombinant proteins. Further, succinate addition is a promising route for the biotechnological production of NADH-dependent microbial metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shams Yazdani, S. and R. Gonzalez (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab. Eng. 10: 340–351.

    Article  Google Scholar 

  2. Dobson, R., V. Gray, and K. Rumbold (2012) Microbial utilization of crude glycerol for the production of value-added products. J. Ind. Microbiol. Biotechnol. 39: 217–226.

    Article  CAS  Google Scholar 

  3. Biebl, H., K. Menzel, A. P. Zeng, and W. D. Deckwer (1999) Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52: 289–297.

    Article  CAS  Google Scholar 

  4. Saxena, R. K., P. Anand, S. Saran, and J. Isar (2009) Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol. Adv. 27: 895–913.

    Article  CAS  Google Scholar 

  5. Gonzalez-Pajuelo, M., J. C. Andrade, and I. Vasconcelos (2005) Production of 1,3-Propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity. J. Ind. Microbiol. Biotechnol. 32: 391–396.

    Article  CAS  Google Scholar 

  6. Cheng, K. K., J. A. Zhang, D. H. Liu, Y. Sun, M. D. Yang, and J. M. Xu (2006) Production of 1,3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnol. Lett. 28: 1817–1821.

    Article  CAS  Google Scholar 

  7. Zhu, C. and B. Fang (2013) Application of a two-stage temperature control strategy to enhance 1,3-propanediol productivity by Clostridium butyricum. J. Chem. Tech. Biotechnol. 88: 853–857.

    Article  CAS  Google Scholar 

  8. Gonzalez-Pajuelo, M., J. C. Andrade, and I. Vasconcelos (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J. Ind. Microbiol. Biotechnol. 31: 442–446.

    Article  CAS  Google Scholar 

  9. Hong, E., S. Yoon, J. Kim, E. Kim, D. Kim, S. Rhie, and Y. W. Ryu (2013) Isolation of microorganisms able to produce 1,3-propanediol and optimization of medium constituents for Klebsiella pneumoniae AJ4. Bioproc. Biosyst. Eng. 36: 835–843.

    Article  CAS  Google Scholar 

  10. Pflugl, S., H. Marx, D. Mattanovich, and M. Sauer (2014) Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresour. Technol. 152: 499–504.

    Article  Google Scholar 

  11. Zheng, Z. M., Q. L. Hu, J. Hao, F. Xu, N. N. Guo, Y. Sun, and D. H. Liu (2008) Statistical optimization of culture conditions for 1,3-propanediol by Klebsiella pneumoniae AC 15 via central composite design. Bioresour. Technol. 99: 1052–1056.

    Article  CAS  Google Scholar 

  12. Oh, B., J. Seo, M. Choi, and C. Kim (2008) Optimization of culture conditions for 1,3-propanediol production from crude glycerol by Klebsiella pneumoniae using response surface methodology. Biotechnol. Bioproc. Eng. 13: 666–670.

    Article  CAS  Google Scholar 

  13. Ahrens, K., K. Menzel, A. Zeng, and W. Deckwer (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol. Bioeng. 59: 544–552.

    CAS  Google Scholar 

  14. Skraly, F. A., B. L. Lytle, and D. C. Cameron (1998) Construction and characterization of a 1,3-propanediol operon. Appl. Environ. Microbiol. 64: 98–105.

    CAS  Google Scholar 

  15. Knietsch, A., S. Bowien, G. Whited, G. Gottschalk, and R. Daniel (2003) Identification and characterization of coenzyme B12-dependent glycerol dehydratase-and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl. Environ. Microbiol. 69: 3048–3060.

    Article  CAS  Google Scholar 

  16. Seo, J. W., M. Y. Seo, B. R. Oh, S. Y. Heo, J. O. Baek, D. Rairakhwada, L. H. Luo, W. K. Hong, and C. H. Kim (2010) Identification and utilization of a 1,3-propanediol oxidoreductase isoenzyme for production of 1,3-propanediol from glycerol in Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 85: 659–666.

    Article  CAS  Google Scholar 

  17. Toraya, T. and R. H. Abeles (1980) Inactivation of dioldehydrase in the presence of a coenzyme-B12 analog. Arch. Biochem. Biophys. 203: 174–180.

    Article  CAS  Google Scholar 

  18. Kajiura, H., K. Mori, T. Tobimatsu, and T. Toraya (2001) Characterization and mechanism of action of a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase. J. Biol. Chem. 276: 36514–36519.

    Article  CAS  Google Scholar 

  19. Honda, S., T. Toraya, and S. Fukui (1980) In situ reactivation of glycerol-inactivated coenzyme B12-dependent enzymes, glycerol dehydratase and diol dehydratase. J. Bacteriol. 143: 1458–1465.

    CAS  Google Scholar 

  20. Ma, B. B., X. L. Xu, G. L. Zhang, L. W. Wang, M. Wu, and C. Li (2009) Microbial production of 1,3-propanediol by Klebsiella pneumoniae XJPD-Li under different aeration strategies. Appl. Biochem. Biotechnol. 152: 127–134.

    Article  CAS  Google Scholar 

  21. Xue, X., W. Li, Z. Li, Y. Xia, and Q. Ye (2010) Enhanced 1,3-propanediol production by supply of organic acids and repeated fed-batch culture. J. Ind. Microbiol. Biotechnol. 37: 681–687.

    Article  CAS  Google Scholar 

  22. Toraya, T. and K. Mori (1999) A reactivating factor for coenzyme B12-dependent diol dehydratase. J. Biol. Chem. 274: 3372–3377.

    Article  CAS  Google Scholar 

  23. Zhang, Y., Z. Huang, C. Du, Y. Li, and Z. Cao (2009) Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab. Eng. 11: 101–106.

    Article  Google Scholar 

  24. Ma, Z., X. Shentu, Y. Bian, and X. Yu (2013) Effects of NADH availability on the Klebsiella pneumoniae strain with 1,3-propanediol operon over-expression. J. Basic Microbiol. 53: 348–354.

    Article  CAS  Google Scholar 

  25. Zhu, M. M., P. D. Lawman, and D. C. Cameron (2002) Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of snglycerol-3-phosphate. Biotechnol. Progr. 18: 694–699.

    Article  CAS  Google Scholar 

  26. Rujananon, R., P. Prasertsan, and A. Phongdara (2014) Biosynthesis of 1,3-propanediol from recombinant E. coli by optimization process using pure and crude glycerol as a sole carbon source under two-phase fermentation system. World J. Microbiol. Biotechnol. 30: 1359–1368.

    Article  CAS  Google Scholar 

  27. Przystalowska, H., J. Zeylanda, D. Szymanowska-Powatowska, M. Szalata, R. Stomski, and D. Lipinski (2015) 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria. Microbiol. Res. 171: 1–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeonwoo Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, E., Kim, J., Ha, Sj. et al. Improved 1,3-propanediol production by Escherichia coli from glycerol due to Co-expression of glycerol dehydratase reactivation factors and succinate addition. Biotechnol Bioproc E 20, 849–855 (2015). https://doi.org/10.1007/s12257-015-0293-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0293-8

Keywords

Navigation